同步整流的简化方法
作者:Diodes 公司AC-DC产品事业部经理 Richard Lin
由于数百亿个新装置 (其中也包括非连网的数十亿个新装置) 预期投入使用,因此对小型、高效率的外部电源转换需求也持续增长。
作者:Diodes 公司AC-DC产品事业部经理 Richard Lin
由于数百亿个新装置 (其中也包括非连网的数十亿个新装置) 预期投入使用,因此对小型、高效率的外部电源转换需求也持续增长。
By Richard Lin, AC-DC Business Unit Manager
It is widely acknowledged that, at its heart, the Internet of Things (IoT) comprises countless sensors, actuators, and other devices that add ‘intelligence’ to the connected world. For the IoT to work as intended, many of these devices must be switched on and connected 24 hours a day, seven days a week.
By Tu Bui – Senior Marketing/Application Manager
Developers of applications that feature power conversion elements, including home appliances, power tools, industrial and office equipment, will know only too well that electromagnetic interference (EMI) is largely unavoidable. However, they should also know that it can be managed, so that its effects are minimized to the point that they no longer present a problem.
By Charles Kuo, Worldwide Sensor Marketing Manager
Many words have been written about how the Internet of Things (IoT) will transform the lives of everyone. What is less often said is that at the heart of the IoT is the humble sensor, which enables previously inanimate objects to communicate with each other and to be controlled and monitored.
作者:Diodes 公司 LED 照明事业部经理 Allan Lin 全世界的家庭和工厂都在拥抱智能技术,通讯与控制系统的连网程度藉由各种无线技术而不断提升,要将便利性与效率带入每个人的生活中。进入物联网 (IoT) 的世界后,我们随时随地都能存取致动器和传感器,用更细腻的角度去检视设备状态,进而将数据传送到云端进行分析,在系统故障之前预先进行维修。例如,我们可以透过 Wi-Fi、Zigbee 或蓝牙低功耗,实时遥控 LED 灯泡,以及选择适合环境的光线色温。 所有这些智能连网装置都需要低待机功耗,这对功率系统设计人员来说是一大挑战。功率转换需在所有负载下维持高效率,包括无线收发器在收发数据封包,或致动器启动时。但是,这些动作其实不常发生,智能系统多数时间都在闲置及等待接收指令,这种「闲置负载」的待机状况对功率转换不佳的系统来说尤其浪费能源。 极大的挑战,便是开发针对各种负载范围将效率优化,拥有恒定稳定输出电压的功率转换器。但由于输出电压会随消耗电流改变,因此这可说是一项相当复杂的设计工作。 法规挑战 对这类系统的开发人员来说,还有除了功率子系统效能以外的更多挑战。全世界有许多不同的法规环境,各个不同国家/地区为了满足其待机功耗、瞬态要求和其他法规,都需要略为不同的功率系统版本。 对智能连网功率系统的开发人员来说,这项设计挑战极为复杂,另外对成本敏感的应用也同样艰难。一个能满足所有要求的设计,其成本可能相当高昂,而且能源效率也可能比针对特定国家/地区优化的装置更低。但若是针对不同地区设计个别的产品与拓扑,要管理所有不同的版本又会产生额外的成本。 高整合度 想要解决这些挑战,我们需要提高智能连网装置功率系统内芯片的整合度。透过在同一封装内整合高电压 MOSFET 开关与功率控制器,不只能满足全球所有的法规要求,还能提供功率效率,并降低待机功耗,花很少的钱就能满足设计人员所需。 例如,AL17050 降压转换器可应用于 85V AC 至 265V AC 的 AC 输入电压范围,无论身处任何地区,皆能安心使用此产品。它可产生 3.…
作者:Diodes 公司产品营销经理吴其昆 您注意到有些东西搭配使用,会产生多么理想的效果吗?我要谈的不是火腿和鸡蛋或盐和胡椒,这些真的只是互补。不,我要谈的是为了真正发挥功效,需要搭配使用的东西,例如凸轮轴与推杆。 把两件东西放在一起,产生一个全新的物品,但仍取决于其组成部分,在自然界相当罕见,然而对于我们这些聪明的工匠来说,这正是我们真正擅长的。在电子业中,这么做非常盛行,更重要的是,在这个领域中,科技可以为我们提供在一致的基础上不断改进的方式。 以电力为例,一般而言总是愈多愈好。我们每获得一项电器产品,就建立了对更多原始电力的需求,因此更有效率地使用电力变得愈来愈重要。这表示在每一个层级,我们都需要更有效率的发电、配电和转换电力的方式。从早期的能源开始,高压交流电一直被视为是有效率的发电和配电方式,当主要产品应用是马达和灯泡时,交流电是很不错的。随着晶体管和集成电路的发明,在局部层级,直流电变得更为重要。 除非我们依据个别情况,开发出可以产生所有所需电力的方式,否则我们仍将继续倚赖高电压交流配电,将电力以管道输送到办公室和家庭。在管道末端会发生转换,从千瓦的交流电降压成毫瓦的直流电。其中的步骤存在效率不彰的问题,电子业正采取措施,以减轻效率低下问题。 这让我们回到了同步性。我们消耗能量的方式,愈来愈多是透过脱机转换,亦即将高压交流电源变成低压直流电源。近期它出现的形式是将电池充电,以供电给便携设备。近期出现的转换拓扑之一,是在二次侧使用一个与一次侧的功率晶体管同步动作的晶体管。次级晶体管取代了效率较差的二极管,也使得此种拓扑结构被命名为:同步整流或 SR。 用行径像二极管的晶体管取代二极管,看起来似乎很没有效率,尤其是通常我们并不认为模仿是一个无损过程。然而在 SR 的情况下,这样做却能提供显著的优点,因为它让关联控制器在可变负载条件下能发挥更大的管理能力。效率的增益百分比取决于 SR 的实作方式,表示我们必须选择正确的解决方案。 以 Diodes 公司生产的次级侧 SR 控制器 APR346 为例。这是一个二次侧 MOSFET 驱动器,支持各种转换器模式,包括连续传导模式、不连续传导模式及准谐振返驰模式,这些模式在脱机转换架构中都很常见。这个装置会感测一次侧 MOSFET 两端的汲极源极电压,并提供正确的闸极驱动器给二次侧 MOSFET。这样一来,它可以在提供 5V 到 20V 直流输出电压的电路中产生更大的效率。这就涵盖了大量的现代产品应用,包括在消费者电子产品中愈来愈重要的 USB 供电 (PD)。 加入像 APR346 这样多用途和能力充足的 SR 控制器,可以在任何脱机转换器中提供秘密源极;由于它省去了使用替代控制器时需要的大量外部组件,还可以降低 BOM…
作者:Diodes 公司模拟产品 - 欧洲与汽车营销经理 Simon Ramsdale 过去二十年来,汽车照明发生了重大变化,相关发展在前向照明领域特别显著。头灯已经从简单的「开/关」、单一方向灯具发展到更具自适应性的照明解决方案,而且从汽车市场的 LED 发展以来,更明显地加速发展。 在其完整生命周期约 100 年间,头灯发生了很大变化以符合新的安全要求,但在过去 20 年中,这些变化是受到其他因素的推动,例如效能、效率、可靠性及造型设计。就这一点而言,上述因素都是 LED 具有极大提升潜力的领域,这并非巧合。 例如,在效能与可靠性方面,头灯已从白炽灯与卤素灯泡发展为 LED 与自适应光束成形。1960 年代引进了卤素灯泡,它可产生更清晰明亮且更强大的光束,提供更远的投射距离。进化过程的下一步是氙气「高强度气体放电」灯泡,大幅提高头灯的光输出,并成为部分高阶制造商的首选技术。本世纪初引进的 LED 灯泡改良了氙气「高强度气体放电」灯泡,当时此进化阶段对于效率并无太大的影响。但是,LED 技术的进一步发展,使 LED 头灯的成本与效率超越 HID。 头灯自适应光束成形的发展代表头灯进化的另一个重要阶段。自适应光束成形使前向照明提升至另一个层级,利用「可操纵」的光束,使光束实际改变方向。虽然实作方式各不相同,但通常藉由开启和关闭特定的 LED 来实现。如此可大幅提高前向照明的效能,同时大幅提升安全性,特别是减少对向车辆产生的眩光。自适应光束成形头灯在复杂程度上有很大的差异,包含的 LED 数量可以从至少 9 个到 80…
作者:Diodes 公司模拟产品 - 欧洲与汽车营销经理 Simon Ramsdale 汽车市场正经历一场有关联网汽车的革命。对产业而言,它代表了分析与行动的整合,其中的本机数据将转换为远程信息,而驾驶辅助功能则成为 ADAS。对消费者而言,其范围超越此抽象的实作定义;联网汽车将有助于克服目前城市环境中驾驶所面临的一些大的实际问题,例如寻找停车位、在繁忙的街道中进行自适应导航,或利用科技以避免城市之间主要道路的拥塞,以及提高驾驶与行人的安全。 虽然联网功能对于提升所有道路用户的整体体验与安全性至关重要,但终极目标是全自动驾驶车,这只有透过高速数据通讯才能实现。 随着车对物 (V2X) 通讯的持续发展,包括车对车、车对行人、车对装置以及车对电网,藉由越来越多的 ADAS 功能的推动,汽车中所产生、传输及处理的数据量正以指数性增加。涉及的资料量极为庞大;一些分析师估计,一辆自动驾驶车每天将产生超过 4GB 的资料,但我们可以假设即使是非自动驾驶的联网汽车每天也会达到 1GB 以上。 为汽车产业开发的现有通讯管道,例如 CAN、FlexRay 及 MOST,将继续为车载通讯提供骨干,但预期不会用它们来处理大量增加的时间关键数据。采用 ADAS 与自动驾驶必须大幅提高处理效能,特别是使用机器视觉系统时,因为这部分的数据极为重要。为维持传输速率,汽车产业正在转向新的高速数据总线与通讯协议,以响应更快速的网络与通讯基础设施,这些类型通常出现在高效能计算 (HPC)。这包括 PCI Express (PCIe) 与 USB 3.…
作者:资深技术营销与计划经理朱文龙 我们每个人偶尔都需要发泄一下,但通常我们知道何时该适可而止;我们可以自我管理自己的行为,因为我们是负责任的成年人。另一方面,谈论到孩子的行为时,他们通常可以有一、两次犯错的机会,因为这也是学习过程的一部分,这也许是一些成年人讨厌自己身为大人的原因。 尽管嵌入式电子装置有许多充满巧思的设计,我们并不能说它们真的「学会」了如何自我调节自己的行为。我们的电路就像自己的孩子,它们在做某些事情时可能真的很聪明,然而在其他方面则仍然需要一些帮助。 那些会考验我们自我调节自我行为能力的,通常是我们无法控制的因素,对电子电路而言也是如此。意想不到的东西才会造成问题,当我们谈论到电源时,这一点也许再明显不过了。 对于敏感的模拟和数字电子装置而言,电源的扰动可能会引起主要问题。之后,集成电路是在抽象层运作,它以相对于电源供应器的电压位准代表「真实世界」的参数。如果电源供应器的动作开始不正确,而我们又没有任何办法可以调节它的话,整个系统的完整性就会出现问题。 减轻电源扰动的影响 尽管一个五岁的孩子在玩具店里崩溃可能让人非常尴尬,但通常不会造成任何长期持续性的损害。然而,当一部电子装置突然决定它不想再控制那台大机器时,恐怕就不能这么说了。在一个连网世界中,即使看起来似乎无关紧要的事情 (例如遗失了几字节的数据),也有可能产生严重的后果。 那么我们该怎样保护自己的「孩子」不受未知事物所影响?这个问题让父母和工程师在夜里无法入眠。在宏观层次,我们将可靠的电源供应视为理所当然,家庭和办公室很少遭遇停电之苦,但如果真的发生了,我们有备援系统 (例如不断电系统) 可以让生活照常运行,至少短时间内是如此。 在微观层次也是如此,只是其形式变成维持电容器和电池备用电源。但这些并不一定总是能保护敏感电路遭遇电源位准的突发、频繁或持续的变化,这才是真正严重的问题。在这里调节就必须介入了。 标准做法会在电源转换阶段实施调节,当中间总线和负载点等概念获得接受后,在比较靠近使用点的地方实施调节,已经变得愈来愈常见和必要。即使如此,一些小型系统仍可倚赖绕行整个 PCB 电路板,将电源供应给许多装置的单一调节电源线。当晶体管密度和 IC 容量增加时,会需要更多电力,通常是在活动爆发期 (很像五岁孩子需要更多关注,却根本无暇顾及)。这些活动爆发期会对电源线产生严重的影响,造成压降和瞬态,使得从同一条电源线供电的所有装置操作全部中断。 LDO 协助我们一同表现出色 真正的问题在于连接到电源总线的每一部装置都有自己的需求,而且它们很少相互协调。例如,如果某个装置知道自己即将进入一段活动高峰期,有 100 毫秒的时间需要增加 10% 的电力,它可以要求与电源相连的其他装置进入低功率模式,或通知电源调节器增加可用的总功率。目前有一些研发朝这个方向在进行,然而对于大部分的零件而言,这种情况仍然是不可行的,因此开发人员改为求助于低压差稳压器 (或 LDO) 来提供解决方案。 LDO 针对可能遭遇扰动的电源线提供局部调节。LDO 通常只服务一个或少数几个组件,将稳定的恒定电压或电流提供给可变负载。负载的变化并不会造成电源电压下降,因为 LDO 的输入电压和输出电压之间有足够的空间,可以维持稳压。LDO 通常是线性的,并完全整合于小型封装内,这表示它们可以放在负载附近,并可大量使用,即使在小型 PCB 板上亦然。类似 AP7381 的装置,其设计目的是为 USB 端口提供恒定电压,例如当装置开启电源时,负载可能会接上及移除数次。在这种情况下,良好的电源电压抑制比 (PSRR) 也是很重要的;AP7381…
作者:LED 资深营销经理阮立飞 您是否会害怕和某些人一起吃晚餐,因为您恰巧知道当他们看着菜单时,实际上完全无法决定要点什么菜?尽管这可能让人很恼火,但请不要责备他们,因为他们可能正遭受心理学家 Barry Schwarz 所谓的「选择的吊诡」所苦。当我们面前有太多选择时,我们会不知所措,并开始怀疑自己的决定,也就是说,如果我们至少能选择一个的话。 菜单工程师 (是的,他们确实存在) 承认确实如此,实际上他们的改善之道是让菜单上的品项数降到最低,同时巧妙地诱导您选择高档次的选项。有一些商业诀窍会让我们这么做,例如使用负空间、将物品摆放在某个位置、将昂贵的商品与定价相对合理的商品并列,以及添加让人垂涎三尺的照片 (您喜欢的汉堡,在美好的一天)。 一些研究显示:如果您将两件相当的商品放在架子上,大部分的人会选择最便宜的,然而如果您提供三件商品,他们会选择中等价位的选项。消费模式心理学是一口很深的井,有许多东西可以汲取,所含括的内容远远不止定价;它包罗万象,包括架子的高度、人工照明的亮度、环境温度和背景音乐等等。事实上,为了达成交易,可以利用所有感官;或许这正是在线购物愈来愈吸引人的原因。在潜意识中,显然我们知道在在线购物时不会受到这么多营销手法的干扰,然而这股潮流正无情地改变中。 那么面对难以抉择的情况时会如何妨碍我们开发电源解决方案呢? 简而言之,有许多选项可供选择,对于任何不完全熟悉所有拓扑形态的工程师而言,这种提议可能令人生畏。对于任何需要电源转换与调节的特定应用,拓扑形态的选择都占有一席之地。虽然午餐要吃什么的决定可能会受变幻莫测的时尚所影响,选择正确的电源解决方案更有可能受限于法规,因为在目前几乎所有国家的环境政策中,电力的永续使用都是主要考虑。 LED 照明这项现代技术,为了符合世界各地的政府设定的目标,已经有了很长远的进展。虽然 LED 照明与传统形式的照明差别极大,但它们的电源需求相当明确。事实上,它们需要恒定的电流,所需的功率等级通常远低于现有的照明设备,这就是能达成高能量效率的原因。然而,如果电源转换解决方案没有优化,这些效率增益可能会损失,这就是让设计工程师感到忧虑的地方。要多少电力才足够? 如果希望比白炽灯泡 (这并不困难) 更有效率,使用任何类型的转换和调节方式真的可行吗? 答案当然是「否」。照明通常受到严格管理,当我们谈论制定 LED 照明设备的规格时,政府并没有天马行空,不切实际。有许许多多的标准、规格和指引文件讨论 LED 照明的效率、维护和使用寿命。任何设计灯具的人,都需要将正确的讯息量提供给打算使用该灯具的合约厂商,让他们也能符合规章和建筑法规。选择正确的电源解决方案是必要的。 有两个指标在整体效率中扮演重要角色,就是 THD (总谐波失真) 和 PFC (功率因子校正),在这个领域中,正确的控制器可以提供可观的优势。以 AL1788 AC/DC 控制器为例,它使用外部 MOSFET,并使用一次侧调节 (PSR),可支持准谐振模式下的波谷切换。它能提供的 PFC 超过 0.…