* DIODES INCORPORATED AND ITS AFFILIATED COMPANIES AND SUBSIDIARIES (COLLECTIVELY, "DIODES") * PROVIDE THESE SPICE MODELS AND DATA (COLLECTIVELY, THE "SM DATA") "AS IS" AND WITHOUT ANY * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY * OR FITNESS FOR A PARTICULAR PURPOSE, ANY WARRANTY ARISING FROM COURSE OF DEALING OR COURSE OF * PERFORMANCE, OR ANY WARRANTY THAT ACCESS TO OR OPERATION OF THE SM DATA WILL BE UNINTERRUPTED, * OR THAT THE SM DATA OR ANY SIMULATION USING THE SM DATA WILL BE ERROR FREE. TO THE MAXIMUM * EXTENT PERMITTED BY LAW, IN NO EVENT WILL DIODES BE LIABLE FOR ANY DIRECT OR INDIRECT, * SPECIAL, INCIDENTAL, PUNITIVE OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION WITH * THE PRODUCTION OR USE OF SM DATA, HOWEVER CAUSED AND UNDER WHATEVER CAUSE OF ACTION OR THEORY * OF LIABILITY BROUGHT (INCLUDING, WITHOUT LIMITATION, UNDER ANY CONTRACT, NEGLIGENCE OR OTHER * TORT THEORY OF LIABILITY), EVEN IF DIODES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, * AND DIODES' TOTAL LIABILITY (WHETHER IN CONTRACT, TORT OR OTHERWISE) WITH REGARD TO THE SM * DATA WILL NOT, IN THE AGGREGATE, EXCEED ANY SUMS PAID BY YOU TO DIODES FOR THE SM DATA. .subckt AS431 ANODE CATHODE REFIN Q8 Q2_C Q2_C R4_N 0 P1 Q9 CATHODE Q7_C Q9_E 0 n1 R8 Q4_E ANODE 800 R9 Q2_E R9_N 1k Q10 CATHODE R6_P ANODE 0 n1 5 Q11 Q7_C R10_P ANODE 0 n1 .nodeset R3_N 1 C2 Q2_E C2_N 2p C3 R9_N R10_P 2p R10 R10_P R1_N 1k C1 CATHODE Q7_C 40p D1 ANODE Q7_C DIODE D2 ANODE CATHODE DIODE R4 CATHODE R4_N 800 Q2 Q2_C Q1_E Q2_E 0 n1 Q3 R9_N C2_N ANODE 0 n1 R5 CATHODE R5_N 800 R6 R6_P Q9_E 150 Q1 CATHODE REFIN Q1_E 0 n1 R7 ANODE R6_P 10k Q6 Q7_C Q7_C REFIN 0 n1 Q7 Q7_C Q2_C R5_N 0 P1 R1 R3_N R1_N 2.4k R2 R3_N C2_N 7.2k Q4 C2_N R1_N Q4_E 0 n1 Q5 R1_N R1_N ANODE 0 n1 R3 Q1_E R3_N 3.22k .model p1 pnp bf=50 .model n1 npn bf=100 tf=2n cjc=1p is=5e-18 NF=1.07 .model diode d rs=1 cjo=2p .ends .subckt AZ431A ANODE CATHODE REF Q10 Cathode Q10_B Q10_E 0 n1 Q3 Q3_C Q3_B Q3_E 0 n1 Q11 Cathode Q11_B Anode 0 n1 Q1 Cathode REF Q3_B 0 n1 Q8 Q3_C Q3_C Q8_E 0 p1 Q9 Q10_B Q3_C Q9_E 0 p1 C1 Cathode Q10_B 14p C2 Q6_C Q6_B 13p Q5 Q5_C Q5_C Anode 0 n1 Q4 Q6_B Q5_C Q4_E 0 n1 Q7 Q10_B Q7_B Anode 0 n1 Q6 Q6_C Q6_B Anode 0 n1 Q2 Q10_B Q10_B REF 0 n1 R7 Q3_E Q6_C 4.1K R6 Q5_C Q7_B 1.29K R5 Q4_E Anode 0.936K R28 R1_N Q6_B 7.488K R4 R1_N Q5_C 2.808K R1 Q3_B R1_N 5.4K R9 Cathode Q9_E 1.01K R8 Cathode Q8_E 1.01K R10 Q10_E Q11_B 263.8 R11 Q11_B Anode 8.9K .model p1 pnp bf=50 .model n1 npn bf=100 tf=2n cjc=1p is=5e-18 NF=1.07 *.model diode d rs=1 cjo=2p .ends .subckt AZ431L ANODE CATHODE REF D0 ANODE REF DIODE Q38 CATHODE ANODE ANODE 0 n1 R1 REF Q25_B 4.2K Q25 CATHODE Q25_B Q25_E 0 n1 R4 Q25_E R4_N 25.6K R14 R4_N R14_N 89.6K R3 R14_N R3_N 25.5K R12 R3_N ANODE 76.8K R13 R4_N Q28_B 4.2K Q28 Q25_E Q28_B R33_P 0 n1 R33 R33_P R33_N 10.25K R8 R33_N ANODE 132K R27 Q29_E ANODE 222K Q29 Q29_C R2_N Q29_E n1 R2 REF R2_N 960K Q44 Q29_C Q29_C CATHODE 0 P1 Q45 Q29_E Q29_C CATHODE 0 P1 Q46 Q46_C Q29_C CATHODE 0 P1 Q47 Q47_C Q29_C CATHODE 0 P1 Q0 ANODE R14_N Q46_C 0 P1 Q1 ANODE R3_N Q47_C 0 P1 Q30 Q30_C Q47_C R28_P 0 n1 8 Q31 Q31_C Q46_C R28_P 0 n1 Q49 Q30_C Q30_C CATHODE 0 P1 Q48 Q31_C Q30_C CATHODE 0 P1 R28 R28_P ANODE 6.5K C0 Q31_C R17_P 26p Q27 R17_P Q31_C CATHODE 0 P1 R17 R17_P ANODE 33K Q33 Q33_C R17_P R23_P 0 n1 R23 R23_P ANODE 865 Q52 Q33_C Q33_C CATHODE 0 P1 Q51 Q51_C Q33_C CATHODE 0 P1 10 Q37 Q51_C Q51_C R23_P 0 n1 20 Q35 CATHODE Q51_C ANODE 0 n1 100 .model p1 pnp bf=50 .model n1 npn bf=100 tf=2n cjc=1p is=5e-18 NF=1.07 .model diode d rs=1 cjo=2p .ends *ZETEX ZHT431 Spice Model v1.0 Last Revised 22/7/2005 * *NOTE: This is a simplified Model. Do not rely on this Model for *validation of circuit stability. It does not accurately replicate *stability boundary conditions with additional load capacitance. *Check stability by normal breadboarding techniques. * .SUBCKT ZHT431 1 2 3 *Connections Vz Vref Gnd *Input current L2 2 12 2E-9 Rin 12 13 Rmod1 20E6 Cin 12 13 1E-12 D1 13 12 Dmod D2 12 11 Dmod *Reference voltage, Voltage dependence Iref 13 21 2.4985E-3 Rref 21 13 Rmod2 1000 G1 21 13 11 13 1.43E-6 *Gain, time constant and clamp voltage G2 13 31 12 21 0.004 Rt1 31 13 1E8 Ct1 31 32 800E-12 Rt2 32 13 2000 Ct2 31 33 50E-12 Rt3 33 13 5 D3 31 13 Dmod D4 13 31 Dmod *Buffer,Output G3 13 41 13 31 0.22 L1 1 11 2E-9 Rz 11 42 10 D5 42 41 Dmod D6 13 41 Dmod D7 13 11 Dmod Rx 13 23 0.5 L3 3 23 2E-9 Rq 11 13 Rmod3 74E3 * .MODEL Rmod1 RES (TC1=2.95E-3 TC2=-5E-7) .MODEL Rmod2 RES (TC1=8.5E-6 TC2=-3.3E-7) .MODEL Rmod3 RES (TC1=-2.5E-3 TC2=2E-5) .MODEL Dmod D IS=1E-14 RS=0.1 BV=22 CJO=0.1E-12 .ENDS ZHT431 * *$ * *ZETEX ZR431 Spice Model v1.0 Last Revised 31/3/2005 * *NOTE: This is a simplified Model. Do not rely on this Model for *validation of circuit stability. It does not accurately replicate *stability boundary conditions with additional load capacitance. *Check stability by normal breadboarding techniques. * .SUBCKT ZR431 1 2 3 *Connections Vz Vref Gnd *Input current L2 2 12 2E-9 Rin 12 13 Rmod1 20E6 Cin 12 13 1E-12 D1 13 12 Dmod D2 12 11 Dmod *Reference voltage, Voltage dependence Iref 13 21 2.4985E-3 Rref 21 13 Rmod2 1000 G1 21 13 11 13 1.43E-6 *Gain, time constant and clamp voltage G2 13 31 12 21 0.004 Rt1 31 13 1E8 Ct1 31 32 800E-12 Rt2 32 13 2000 Ct2 31 33 50E-12 Rt3 33 13 5 D3 31 13 Dmod D4 13 31 Dmod *Buffer,Output G3 13 41 13 31 0.22 L1 1 11 2E-9 Rz 11 42 10 D5 42 41 Dmod D6 13 41 Dmod D7 13 11 Dmod Rx 13 23 0.5 L3 3 23 2E-9 Rq 11 13 Rmod3 74E3 * .MODEL Rmod1 RES (TC1=2.95E-3 TC2=-5E-7) .MODEL Rmod2 RES (TC1=8.5E-6 TC2=-3.3E-7) .MODEL Rmod3 RES (TC1=-2.5E-3 TC2=2E-5) .MODEL Dmod D IS=1E-14 RS=0.1 BV=22 CJO=0.1E-12 .ENDS ZR431 * *$ * *ZETEX ZR431L Spice Model v1.0 Last Revised 21/10/05 * *NOTE: This is a simplified model. Do not rely on this model for *validation of circuit stability. It does not accurately replicate *stability boundary conditions when the device is operated with *additional load capacitance. Check the circuit stability by normal *breadboarding techniques. * .SUBCKT ZR431L 1 2 3 *Connections Vz Vref Gnd * *Input current Rin 2 3 Rmod1 1.127E7 D1 3 2 Dmod1 D2 2 1 Dmod1 Cin 2 3 10E-12 * *Quiescent current E1 50 3 2 3 1 D8 50 51 Dmod1 Rq 51 52 Rmod4 31E3 Vq 52 3 0 F1 1 3 Vq 1 Ro 1 3 1.5E6 * *Reference voltage Iref 3 21 1.2405E-3 Rref 21 3 Rmod2 1000 * *Voltage dependence G1 21 3 POLY(1) 1 3 0 1.57E-6 -0.97e-7 * *Gain G2 3 31 2 21 1e-7 Rt2 3 31 100E6 Rt3 3 32 3E6 Ct1 31 32 3E-13 D3 31 3 Dmod1 D4 3 31 Dmod1 * *Output *Q1 5 42 3 Qmod1 Cr1 7 31 1.5e-14 G3 41 3 31 3 0.8 Rc1 6 7 5 Rc2 7 5 5 D6 3 41 Dmod1 D7 3 1 Dmod1 L1 1 6 10nH D9 5 41 Dmod2 * .MODEL Qmod1 NPN BF=220 CJC=3E-12 CJE=3E-12 .MODEL Rmod1 RES (TC1=2.95E-3 TC2=-5E-7) .MODEL Rmod2 RES (TC1=1.5e-5 TC2=-3.5e-7) .MODEL Rmod3 RES (TC1=-2.5E-3 TC2=2E-5) .MODEL Rmod4 RES (TC1=1.7E-3 TC2=0) .MODEL Dmod1 D IS=5E-15 RS=4 BV=22 .MODEL Dmod2 D IS=1E-18 RS=.01 .ENDS ZR431L * *$ * *ZETEX ZRC250 Spice Model v1.0 Last Revised 11/07/06 * *NOTE: This is a simplified model. Confirm *any design using a physical circuit. * .SUBCKT ZRC250 1 3 *Connections Vz Gnd * *Quiescent current R1 1 49 320E3 R2 49 3 315.2E3 C1 49 1 4.5e-12 E1 50 3 49 3 1 D8 50 51 Dmod1 Rq 51 52 Rmod2 70E3 Vq 52 3 0 F1 1 3 Vq 1 * *Reference voltage Iref 3 21 1.2405E-3 Rref 21 3 Rmod1 1000 * *Gain G2 3 31 49 21 1e-7 Rt2 3 31 100E6 Rt3 3 32 3E6 Ct1 31 32 1.5E-13 D3 31 3 Dmod1 D4 3 31 Dmod1 * *Output G3 41 3 31 3 0.3 Rc1 6 5 10 D6 3 41 Dmod1 D7 3 6 Dmod1 L1 1 6 10nH D9 5 41 Dmod2 * .MODEL Qmod1 NPN BF=220 CJC=3E-12 CJE=3E-12 .MODEL Rmod1 RES (TC1=3.8e-5 TC2=-1e-7) .MODEL Rmod2 RES (TC1=1.7E-3 TC2=0) .MODEL Dmod1 D IS=5E-15 RS=4 BV=22 .MODEL Dmod2 D IS=1E-18 RS=.01 .ENDS ZRC250 * *$ * *TITLE=ZXRE160 MACROMODEL *ORIGIN=DZSL_AG_GS *Derived from the ZXRE060 *SIMULATOR=DIODES, SIMETRIX and PSPICE *DATE=3rd March 2011 *VERSION=1 *PIN_ORDER 1:PGND, 2:GND, 3:IN, 4:FB, 5:OUT * .subckt ZXRE160 PGND GND IN FB OUT * pins-----------1----2----3----4---5 * *Voltage reference with temperature effect E1 REFG 1 value={(0.6+1.72e-5*(TEMP-25)-1e-7*(TEMP-25)**2)*(0.5+0.5*tanh(4*(V(VCCL)-1.5)))} I1 VCCL 1 0.48m ; Supply current R1 REFG inm 48k R2 FB inp 48k C1 inm inp 0.2p I3 VCCL inp 45n ; input bias current I4 VCCL inm 45n * *First amplifier, limited to internal 2V supply E2 E2out 1 value={tanh(11.52*(V(inp)-V(inm)))} R7 E2out C3p 1 C3 C3p 1 250n ; 600kHz first breakpoint R3 C3p int 10k I2 VCCL int 2.5u C2 int 1 6p ; 2MHz second breakpoint *Second amplifier: transconductance *with sink current output voltage limit of 0 *source current output voltage limit of 2V G1 G1out 1 value={11e-6*(1-tanh(19.3*(v(int)-v(Q2e))))*tanh(10*max((V(G1out)-V(1)),0))} G2 VCCL G1out value={11e-6*(1+tanh(19.3*(V(int)-V(Q2e))))*tanh(10*max(2-(V(G1out)-V(1)),0))} * *Output Stage Q1 Q1c G1out Q2b 1 NPNCT R4 VCCL Q1c 250 R5 Q2b PGNDL 50k Q2 OUTL Q2b Q2e 1 NPNCT 5 R6 Q2e PGNDL 2.56 * L1 IN VCCL 2n L2 GND 1 2n L3 OUT OUTL 2n L4 PGND PGNDL 2n *Output transistor model from CT .model NPNCT NPN + is = 2.265f + nf = 1.000 + ise = 6.055f + ne = 1.562 + bf = 190.0 + ikf = 28.71m + vaf = 22.83 + nr = 1.008 + isc = 1.00000e-24 + nc = 1.543 + br = 34.83 + ikr = 1.250m + var = 19.13 + rb = 267.9 + irb = 1.250m + rbm = 100.0m + re = 802.9m + rc = 164.1m + cje = 163.1f + vje = 1.200 + mje = 151.0m + tf = 70.00p + xtf = 10.00 + vtf = 30.00 + itf = 200.0m + ptf = 34.00 + cjc = 380.6f + vjc = 410.0m + mjc = 360.0m + xcjc = 50.00m + tr = 6.00n + cjs = 525.2f + vjs = 401.0m + mjs = 179.2m + xtb = 200.0m + xti = 5.100 + eg = 1.110 + fc = 950.0m .ends ZXRE160