The ZXCT1032EV1 provides a very convenient means for evaluating the capabilities of the ZXCT1032 current monitor.

The ZXCT1032 is a high-side current monitor that drives a PMOS or PNP transistor to provide in-rush current limit and over-current protection. The ZXCT1032 includes a high accuracy high-side current monitor, a start-up timer and a re-try inhibit timer. The ZXCT1032 takes the voltage developed across a current shunt resistor and compares this with an externally set trip point. It works in three modes:

- Linear soft-start
- Over-current detector
- Over-current disconnect/fuse

For details on these and other features of the ZXCT1032, refer to the datasheet which is available on the Zetex Semiconductors’ web site.

The evaluation board is more complex than the typical application of the device. This is because it contains some features to aid with experimentation and visualisation of the operational status of the device. Some of these will be briefly explained with reference to Figure 1.
The sense resistor, R_S, consists of two resistors (R1 and R2) which are configured in parallel such that either one or both resistors could be connected by completing the solder-bridge link next to each one. R2 (0.5R) is connected by default.

A third resistor, R6, is in parallel with R1 and R2 consists of two pads with a hole in each pad. R6 provides means for connecting an external R_S either alone or in parallel with R1 and R2.

Trip current

When the load current reaches or exceeds a certain value, transistor Q101 is switched off. The current at which this happens is given by,

$$I_{TRIP} = \frac{V_{ISET} - 0.15}{10 \cdot R_{SENSE}}$$

With the default values supplied on the evaluation board, this becomes

$$I_{TRIP} = \frac{2.1 - 0.15}{10 \cdot 0.5} = 390mA$$

The board is supplied without R7 which means that V_{ISET} defaults to the internal 2.1V reference. An external V_{ISET} can be imposed on terminal P2-2. A lower V_{ISET} will lower the trip current and vice versa. A V_{ISET} of less than 100mV will permanently turn the series transistor off.
On-board adjustment of V_{ISET}

As an alternative to using the on-board voltage reference for V_{ISET}, a multi-turn potentiometer, VR1, is provided on the evaluation board. This can be connected to the V_{ISET} input by adding R7. R7 can be any value from 0 to 2.2k. It might however be best not to make R7 zero if external V_{ISET} will also be used so that the external source of V_{ISET} is not inadvertently shorted out when VR1 is set to 0Ω.

When VR1 is supplying V_{ISET}, the range will be adjustable from a minimum value up to a maximum value that is largely dependent on the supply voltage. The minimum and maximum values can be determined from the following expressions.

$$V_{\text{ISET}}(\text{min}) = \frac{V_{\text{REF}} \cdot R7}{R7 + R_{\text{VREF}}} = \frac{2.1 \cdot R7}{R7 + 50k}$$

where R7 is in kΩ and both V_{ISET} and V_{REF} are in Volts. R_{VREF} is the source resistance of the on-chip voltage reference.

$$V_{\text{ISET}}(\text{max}) = \frac{V_{T} \cdot R_{\text{VREF}} + V_{\text{REF}} \cdot R_{T}}{R_{\text{VREF}} + R_{T}}$$

where $V_{T} = \frac{V_{\text{SUP}}}{2}$ and $R_{T} = 5k + R7$.

For R7 = 2.2kΩ, the above formulae simplify to

$$V_{\text{ISET}}(\text{min}) = \frac{2.1 \cdot 2.2}{2.2 + 50} = 92.7 mV \text{ (VR1 at minimum)}$$

$$V_{\text{ISET}}(\text{max}) = 0.437 \cdot V_{\text{SUP}} + 0.264 V \text{ (VR1 at maximum)}$$

Flags and indicators

The ZXCT1032 has an active low flag which goes low when the device has tripped. This flag is used to provide a number of indications regarding the status of the evaluation board.

LEDs

There are two LEDs labelled FOK (Flag OK - green) and FTP (Flag TriPped - yellow). These light to indicate their respective functions.

There is a third LED labelled PWR (PoWeR – red) which will be on as long as there is power on at the output, i.e. Q101 is on.

Flags

The device flag is buffered by a two stage transistor (Q2,3) to provide an active high (TRP) and active low (TRP) tripped flag which are available on terminals P4-2 and P4-4 respectively. Terminals P4-1 and P4-3 are ground pins.

Both the TRP and TRP pins can sink currents up to 500mA from a voltage not greater than (V_{SUP} + 5V) or 30V whichever is the lower.
Interfaces

The interfaces are as shown in Figure 1.

P1 – \(V_{\text{SENSE}} \) - Provides a convenient point to monitor \(V_{\text{SENSE}} \). Do not use this terminal for shunt resistors especially when handling high currents. Use R6 instead.

<table>
<thead>
<tr>
<th>P1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S-</td>
</tr>
<tr>
<td>2</td>
<td>S+</td>
</tr>
</tbody>
</table>

P2 – Input

<table>
<thead>
<tr>
<th>P2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>(V_{\text{ISET}})</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>Supply voltage</td>
</tr>
</tbody>
</table>

P3 – Output

<table>
<thead>
<tr>
<th>P3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Output</td>
</tr>
</tbody>
</table>

P4 – Flags

<table>
<thead>
<tr>
<th>P4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>Tripped</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>\textit{Tripped}</td>
</tr>
</tbody>
</table>

P5 – Timing capacitor \(C_T \). There is an on-board 0.1\(\mu \)F capacitor. Any addition across P5 will appear in parallel with this 0.1\(\mu \)F capacitor.

<table>
<thead>
<tr>
<th>P5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>(C_T)</td>
</tr>
</tbody>
</table>

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>ORDER NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZXCT1032EV1</td>
</tr>
</tbody>
</table>

Please note evaluation boards are subject to availability and qualified leads.
ZXCT1032EV1 Summary

Sense resistor

The board has been designed with two selectable values of sense resistor. The value of the sense resistor can be chosen by using the solder links SL1 and SL2.

The board is also tracked for a user-defined through-hole resistor (R6).

The 50mΩ resistor (R1) is selected by shorting SL1 and opening SL2.

The 500mΩ resistor (R2) is selected by shorting SL2 and opening SL1.

If both links are shorted the effective resistance is 45.45mΩ.

If both links are open, the optional leaded resistor R6 can be exclusively used as the sense resistor.

The maximum power dissipation rating of the resistor must be appropriate to the load current level.

For further information on choosing a value of sense resistor please refer to the ZXCT1032 datasheet.

Trip current sensitivity and its adjustment

The current at which the ZXCT1032EV1 trips (DRIVE goes high and FLAG goes low) for a given R_S is changed by setting V_{SET}.

This trip current is given by,

$$I_{TRIP} = \frac{V_{SET} - 0.15}{10 \cdot R_S}$$

Configuration table for ZXCT1032EV1

<table>
<thead>
<tr>
<th>R_S (mΩ)</th>
<th>Trip Current</th>
<th>SOLDER LINK CONFIGURATION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3.9</td>
<td>Short SL2</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.39</td>
<td>Short SL1</td>
<td></td>
</tr>
<tr>
<td>45.45</td>
<td>4.3</td>
<td>Short SL1 & SL2</td>
<td></td>
</tr>
</tbody>
</table>

Configuration for different trip currents.

The board can be configured for different trip currents by changing the SMD resistors or fitting a suitable wire ended resistor and opening both solder links. It is important to ensure an appropriate value of R_S is selected to obtain the desired accuracy for a given output current.

Choosing a larger value for R_S gives a higher output voltage for a given current resulting in better resolution but at the expense of increased voltage drop and higher dissipation in R_S.

The ZXCT1032 is optimized for values of V_{SENSE} around 200mV.

Accuracy

The accuracy of the trip current will be influenced by the tolerance of the external sense resistors used. The ZXCT1032EV1 utilizes 1% sense resistors.
COMPONENTS LIST

<table>
<thead>
<tr>
<th>Ref</th>
<th>Qty</th>
<th>Value</th>
<th>Pkg</th>
<th>Part Number</th>
<th>Manufacturer</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>0.1µF/25v</td>
<td>0805</td>
<td>LGR971-Z</td>
<td>Osram</td>
<td>FEC 122-6373</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>LED Grn</td>
<td>0805</td>
<td>LGR971-Z</td>
<td>Osram</td>
<td>FEC 122-6420</td>
</tr>
<tr>
<td>D2</td>
<td>1</td>
<td>LED Yel</td>
<td>0805</td>
<td>LSR976</td>
<td>Osram</td>
<td>FEC 122-6392</td>
</tr>
<tr>
<td>D3</td>
<td>1</td>
<td>LED Red</td>
<td>0805</td>
<td>ZHC5500</td>
<td>Zetex</td>
<td></td>
</tr>
<tr>
<td>D4,5</td>
<td>2</td>
<td>Schottky</td>
<td>SOT-23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC1</td>
<td>1</td>
<td>Current Monitor</td>
<td>SO8</td>
<td>ZXCT1032N8</td>
<td>Zetex</td>
<td></td>
</tr>
<tr>
<td>P1,5</td>
<td>2</td>
<td>2-W STB</td>
<td>MPT2</td>
<td>1725656</td>
<td>Phoenix</td>
<td>FEC 304-1359</td>
</tr>
<tr>
<td>P3</td>
<td>1</td>
<td>3-W STB</td>
<td>MPT3</td>
<td>1725669</td>
<td>Phoenix</td>
<td>FEC 304-1360</td>
</tr>
<tr>
<td>P2,4</td>
<td>2</td>
<td>4-W STB</td>
<td>MPT4</td>
<td>1725672</td>
<td>Phoenix</td>
<td>FEC 304-1414</td>
</tr>
<tr>
<td>Q101</td>
<td>1</td>
<td>FET</td>
<td>SOT-23-6</td>
<td></td>
<td>Zetex</td>
<td></td>
</tr>
<tr>
<td>Q2,3</td>
<td>2</td>
<td>FET</td>
<td>SOT-23</td>
<td></td>
<td>Zetex</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>50mΩ</td>
<td>2512</td>
<td>LR2512-R050FW</td>
<td>Welwyn</td>
<td>SMD Sense Resistor 1%</td>
</tr>
<tr>
<td>R2</td>
<td>1</td>
<td>500mΩ</td>
<td>2512</td>
<td>LR2512-R500FW</td>
<td>Welwyn</td>
<td>SMD Sense Resistor 1%</td>
</tr>
<tr>
<td>R3,4,5</td>
<td>3</td>
<td>2.2k</td>
<td>0805</td>
<td></td>
<td>Standard 0805 1%</td>
<td></td>
</tr>
<tr>
<td>R8,9,10</td>
<td>3</td>
<td>10k</td>
<td>0805</td>
<td></td>
<td>Standard 0805 1%</td>
<td></td>
</tr>
<tr>
<td>R11</td>
<td>1</td>
<td>47k</td>
<td>0805</td>
<td></td>
<td>Standard 0805 1%</td>
<td></td>
</tr>
<tr>
<td>RV1</td>
<td>1</td>
<td>Trim-pot</td>
<td></td>
<td>T93YB 10k 10%TU</td>
<td>Vishay</td>
<td>FEC 114-1419</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SET-UP AND TEST

The board is preset to trip at a load current of 390mA (SL2 is shorted to connect in R2, 500mΩ, sense resistor and internal VREF is used).

Required Equipment

1. 1 x 30R 15W resistor (load – it may be necessary to mount resistor on heat sink).
2. 1 x adjustable bench PSU. (A second PSU can optionally be used to vary VSET to change the trip current - see Error! Reference source not found. – or the on-board variable resistor may be used instead.)
3. 2 x DVM’s (one for voltage measurement and one for current measurement)
4. 1.5/1.8mm flat jeweller’s screw driver (for terminal blocks).

420mA load test (Refer to Error! Reference source not found. for test diagram.)

1. Ensure SL2 is shorted.
2. Set PSU1 to 0V and limit its current to 500mA.
3. Connect PSU1 to VSUP.
4. Connect the resistor in series with the ammeter set to a suitable range for measuring up to 500 mA DC.
5. Switch on PSU1 and adjust until the ammeter reads 350 mA ±1 mA. LED’s PWR and FOK should be lit.
6. On terminal P4, measure pin TRP with a DVM. It should be high.
7. On terminal P4, measure pin TRP with a DVM. It should be low.
8. Increase PSU1 until ammeter current drops to less than 40mA. Make sure that this happens around 390mA ±30mA (the yellow LED will light whilst the red and green LED’s will glow at a reduced brightness - some flickering may be observed).
9. On terminal P4, measure pin TRP(1) with a DVM. It should be low. Low means less than 0.15V SUP.
10. On terminal P4, measure pin TRP with a DVM. It should be high. High means greater than 0.85V SUP.

End of Test

1 The voltage on pins TRP and TRP are square waves with complementary low and high duty cycles respectively. The duty cycle is governed by capacitor C. Therefore, the coefficient of V SUP given for these tests will change if a different value of C is used. The same thing applies to the 40mA limit in Test 8.
Figure 3 Test diagram for ZXCT1032EV1

EVALUATION BOARD
Definitions

Product change
Diodes Incorporated reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer
The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user’s application and meets with the user’s requirements. No representation or warranty is given and no liability whatsoever is assumed by Diodes Inc. with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Diodes Inc. does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support
Diodes Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:
 1. are intended to implant into the body
 or
 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction
The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions
All products are sold subject to, Diodes Inc. terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement. For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Diodes sales office.

Quality of product
Diodes Zetex Semiconductors Limited is an ISO 9001 and TS16949 certified semiconductor manufacturer. To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com or www.diodes.com. Diodes Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)
Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

Green compliance
Diodes Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Diodes Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:
- **“Preview”** Future device intended for production at some point. Samples may be available
- **“Active”** Product status recommended for new designs
- **“Last time buy (LTB)”** Device will be discontinued and last time buy period and delivery is in effect
- **“Not recommended for new designs”** Device is still in production to support existing designs and production
- **“Obsolete”** Production has been discontinued

Datasheet status key:
- **“Draft version”** This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice. This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.
- **“Issue”** This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.

Sales offices

The Americas
3050 E. Hilcrest Drive
Westlake Village, CA 91362-3154
Tel: (+1) 805 446 4800
Fax: (+1) 805 446 4850

Europe
Kustermannpark Balanstraße 59, D-81441 München Germany
Tel: (+49) 89 645 4940 Fax: (+49) 89 645 4949

Taiwan
7F, No. 50, Hsin-Tien Min Chuan Road Taipei, Taiwan
Tel: (+886) 289 146 000 Fax: (+886) 289 146 639

Shanghai
Rm. 606, No.1158 Changning Road
Shanghai, China
Tel: (+86) 215 241 4882 Fax: (+86) 215 241 4891

Shenzhen
Room A1103-04, ANLIAN Plaza, #40118 Jintian Road Futian CBD
Shenzhen, China
Tel: (+86) 755 882 849 88 Fax: (+86) 755 882 849 99

Korea
6 Floor, Changhwa B/D, 105-5 Yoongtong-dong, Yeongdong gu, Suwon-si, Gyeonggi-do, Korea 443-813
Tel: (+82) 312 731 884 Fax: (+82) 312 731 885