AN63

Designing with Shunt Regulators - ZXRE060 low voltage regulator

Peter Abiodun A. Bode, Snr. Applications Engineer, Diodes Zetex Ltd

Introduction

More and more there is a trend towards lower operating voltages for electronic circuits in order to both increase speed and keep power consumption down. This is especially the case with microprocessor applications.

Many applications are now required to operate at voltages as low as 1V and less. Until recently the lowest reference devices with a reference voltage of 1.2V will not do in these applications. The ZXRE060, a 0.6V reference, is designed to fill this gap.

With a normal reference, the power to drive its internal functions is normally derived from the voltage dropped across its cathode (K) and anode (A) terminals. Because the minimum 0.6V terminal voltage at which this device works is too low for this, provision is made for the device to be separately powered via two pins. This makes the 0.6V reference a 5-terminal device as illustrated in Figure 1 below.

![Figure 1 ZXRE060 - 0.6V reference](image_url)

The extra two power pins are shown labelled V_IN and GND respectively. These pins require a minimum supply of 2.2V for the ZXRE060 to function correctly.

An interesting point is that V_IN can be connected to the OUT pin and GND connect to the PGND pin. This effectively turns the ZXRE060 into a 3-terminal device. The FB pins still controls at 0.6 but the regulated voltage across the device can not be less than 2.2V.

In its 3-terminal configuration, the ZXRE060 can technically be used in all the example circuits for a standard 3-terminal reference. However, using it for some of the circuits in the 5-terminal mode to take advantage of its 0.6V operation requires modified configurations. Primarily, this device is targeted at applications that need to operate below 1.24V and only this aspect is covered in this document.
Design guides

1. Determine \(I_{\text{OUT}} \) and choose a suitable transistor taking power dissipation into consideration.

2. Determine \(I_B \) from
 \[
 I_B = \frac{I_{\text{OUT}(\text{max})}}{(h_{FE(\text{min})} + 1)}
 \]

3. Determine \(I_{R3} \) from \(I_{R3} \geq I_B + I_{KA(\text{min})} \). The design of the ZXRE060 effectively means there is no \(I_{KA(\text{min})} \) limitation as in conventional references. There is only an output leakage current which is a maximum of 1µA. Nevertheless, it is necessary to determine an \(I_{KA(\text{min})} \) to ensure that the device operates within its linear range at all times. \(I_{KA(\text{min})} \approx 10\mu\text{A} \) should be adequate for this.

4. Determine \(R3 \) from
 \[
 R3 = \frac{V_{IN} - (V_{OUT} + V_{RE})}{I_{R3}}
 \]

5. Although unlikely to be a problem, ensure that \(I_{R3} \leq 20\text{ mA} \).
Refer to the Appendix in AN57 for information on calculating output error.

![Diagram of 1V Current-boosted shunt regulator](image)

Figure 6
1V Current-boosted shunt regulator

Design guides
1. Determine I_{OUT} and choose a suitable transistor taking power dissipation into consideration.
2. Determine I_B from
 \[I_B = \frac{I_{OUT\text{ (max)}}}{(h_{FE\text{ (min)}} + 1)} \]
3. Determine I_{R3} from
 \[I_{R3} = I_{OUT\text{ (max)}} \]
4. Determine $R3$ from
 \[R3 = \frac{V_{IN} - V_{OUT}}{I_{R3}} \]
5. It is best to let the ZXRE060 supply as much current as it can before bringing Q1 into conduction. Not only does this minimise the strain on Q1, it also guarantees the most stable operation. Choose a nominal value between 15mA and 20mA for this current, I_{R4}. Calculate $R4$ from
 \[R4 = \frac{V_{BE}}{I_{R4}} \]

![Diagram of 1.15V over-voltage indicator](image)

Figure 7
1.15V over-voltage indicator

V_{OUT} goes low and LED is lit when monitored supply

\[V_{OUT} > V_{REF}\left(1 + \frac{R1}{R2}\right) \]

\[R3 = \frac{V_{IN} - (V_F + 0.2)}{I_{R3}} \]

$I_{F\text{ (max)}} \geq I_{R3} \leq 20mA$

V_F and I_F are forward voltage drop and current of LED1 respectively.
Stability considerations

The physical position of C2 and its value is critical to maintaining good stability. C2 should be located in close physical proximity to the ZXRE060 and connected to its pins with the shortest and widest possible copper track. The value of C2 required to ensure stability generally ranges from about 0.1\textmu F up to 10 \textmu F depending on application and environment with higher gain applications generally requiring smaller values.

Conclusion

The above circuits are only representative of what could be done with the ZXRE060 and are by no means exhaustive. They provide examples of basic considerations and calculations that are needed by the designer. These calculations can either be applied to, or be adapted for, use in similar designs.

Recommended further reading

AN58 - Designing with Shunt Regulators - *Shunt Regulation*

AN59- Designing with Shunt Regulators - *Series Regulation*

AN60 - Designing with Shunt Regulators - *Fixed Regulators and Opto-Isolation*

AN61- Designing with Shunt Regulators - *Extending the operating voltage range*

AN62 - Designing with Shunt Regulators - *Other Applications*
Definitions

Product change
Diodes Incorporated reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer
The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user’s application and meets with the user’s requirements. No representation or warranty is given and no liability whatsoever is assumed by Diodes Inc. with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Diodes Inc. does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, rights arising from such use or otherwise. Diodes Inc. does not assume any legal responsibility or will not be held legally liable (whether or not written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

Life support
Diodes Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:
1. are intended to implant into the body
or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction
The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions
All products are sold subjects to Diodes Inc. terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

Quality of product
Diodes Zetex Semiconductors Limited is an ISO 9001 and TS16949 certified semiconductor manufacturer.

ESD (Electrostatic discharge)
Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time.

Green compliance
Diodes Inc. is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

Diodes Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:
- “Preview” Future device intended for production at some point. Samples may be available
- “Active” Product status recommended for new designs
- “Last time buy (LTB)” Device will be discontinued and last time buy period and delivery is in effect
- “Not recommended for new designs” Device is still in production to support existing designs and production
- “Obsolete” Production has been discontinued

Datasheet status key:
- “Draft version” This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice.
- “Provisional version” This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.
- “Issue” This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.

Diodes Zetex sales offices

Europe
Diodes Zetex GmbH
Kustermann-park
Balanstraße 59
D-81541 München
Germany
Telephone: (49) 89 45 49 49 0
Fax: (49) 89 45 49 49 49
Europe.sales@zetex.com

Americas
Zetex Inc
700 Veterans Memorial Highway
Hauppauge, NY 11788
USA
Telephone: (1) 631 360 2222
Fax: (1) 631 360 8222
usa.sales@zetex.com

Asia Pacific
Diodes Zetex (Asia) Ltd
3701-04 Metroplaza Tower 1
Hing Fong Road, Kwai Fong
Hong Kong
Telephone: (852) 26100 611
Fax: (852) 24250 494
asia.sales@zetex.com

Corporate Headquarters
Diodes Incorporated
15660 N Dallas Parkway
Suite 850, Dallas
TX75248, USA
Telephone: (1) 972 385 2810

© 2008 Published by Diodes Incorporated

Issue 1 - September 2008