Not Recommended for New Design - Use PI2DPX1067

PI2DPX1066

1.8V 10Gbps USB-C DP-Alt Linear ReDriver with AUX-SBU Switch

Description

The PI2DPX1066 is a non-blocking USB Type-C® DP-Alt mode linear ReDriver™ in 4-to-4 configuration operated by 1.8v power supply. It supports four operation modes through I2C bus setting for USB3.2 Gen2, USB3.2 Gen2/2-lane DP1.4/DP2.1 (UHBR10), 4-lane DP1.4/DP2.1 (UHBR10) or USB3.2 Gen2x2 with speed up to 10Gbps per channel. It swaps the high speed channels under the flip and non-flip plug in compliance to Type-C connector with the integrated AUX crossbar switch for SBU pins.

The non-blocking linear ReDriver design ensures the differential signals conveying pre-shoot and de-emphasis equalization waveforms from transmitter side to receiver side, this can help to optimize the overall channel link adjustment conducted by the system transmitter and receiver with DFE. The CTLE equalizers are implemented at the inputs of the ReDriver to compensate the channel loss and reduce the ISI jitters. The programmable flat gain and linearity adjustments support the eye diagram opening.

The CTLE EQ gains, flat gains and linearity are individually programmable on each channel for flexible tuning via I2C register settings.

Application(s)

- Laptop PCs
- · Desktop PCs
- · Gaming Consoles
- VR/AR Goggles
- Active Cables

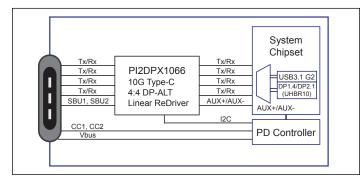


Figure 1-1 System with USB Type-C Connector Application

Features

- 4-to-4 channel configuration with 10Gbps linear ReDriver
- Configurable for USB3.2 Gen2, USB3.2 Gen2/2-lane DP1.4/DP2.1 (UHBR10), 4-lane DP1.4/DP2.1 (UHBR10) or USB3.2 Gen2x2 operations
- Default USB Type-C safe state (Hi-Z) after power-on
- Ultra low latency (<300ps) for better interoperability and data throughput
- Individual controls on CTLE gain, Flat Gain and Output linearity
- Integrated AUX channel crossbar switch for side band signal
- Type-C connector flip and non-flip plug support
- I2C Slave support with speed up to 1MHz
- Very low USB and DisplayPort active mode and power saving mode operation
- Single power supply: 1.8V +/-5%
- Industrial temperature support: -40°C to +85°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

• Package: Tiny 32-pin X2QFN, 2.85 x 4.5 mm (0.4 mm pitch)

Ordering Information

Orderable Part Number	Package Code	Package Description
PI2DPX1066XUAEX	XUA	32-pin, 2.85x4.5mm (X2QFN)

Notes:

- E = Pb-free and Green
- X suffix = Tape/Reel

Notes

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

2. General Information

2.1 Revision History

Date	Revision	Description of Changes
February 2020	1	Preliminary Datasheet Release
May 2020	2	Updated Section 4.7 I2C Register Definitions Updated Section 5.3 Thermal Information Updated Section Power Consumption Updated Table 4-5 Chip Enable Control Added Section 4.6.2 Indexed Read/Write Protocol
July 2020	3	Updated all DP1.4 to DP1.4/DP2.0 (UHBR10) Updated Power and Return Loss Numbers
February 2021	4	Updated Section BYTE 3 (Channel assignment of RXDET_EN and configuration mode) Updated Section 5.2 Power Consumption Updated Ordering Information Updated Important Notice Formal Datasheet Release
April 2021	5	Updated Table DP Low Power Mode Description
September 2021	6	Updated Section 6.2 Reference Application Schematics Updated Section 5.2 Recommended Operating Conditions
October 2021	7	Updated Part Marking
November 2021	8	Updated Section 5.1 Absolute Maximum Ratings
February 2022	9	Updated Part Marking
December 2025	10	Updated All DP2.0 to DP2.1 Updated Section 3.2 Pin Description Updated Section 5.1 Absolute Maximum Rating Updated Section 4.7 I2C Register Definitions

Contents

I.	Product Summary	l
2.	General Information	2
	2.1 Revision History	2
3.	Pin Configuration	4
	3.1 Package Pin-out	4
	3.2 Pin Description	5
4.	Functional Description	<i>6</i>
	4.1 Functional Block Diagram	
	4.2 Operating Modes	
	4.3 USB Mode	8
	4.4 DisplayPort Mode	9
	4.5 CTLE Equalization, Flat Gain, Output Linearity and Chip Enable Controls	12
	4.6 Detail Programming Registers	13
	4.7 I2C Register Definitions	14
5.	Electrical Specification	23
	5.1 Absolute Maximum Ratings	23
	5.2 Recommended Operating Conditions	23
	5.3 Thermal Information	23
	5.4 Power Consumption	23
	5.5 AC/DC Characteristics	24
	5.3 I2C Electrical Specification and Timing	31
6.	Applications	33
	6.1 Type-C AC-cap Connection Diagram	33
	6.2 Reference Application Schematics	
	6.3 PCB Layout Guideline	
7.	Mechanical/Packaging Information	42
	7.1 Mechanical Outline	
	7.2 Part Marking Information	43
	7.3 Tape & Reel Materials and Design	44
8.	Important Notice	47

3. Pin Configuration

3.1 Package Pin-out

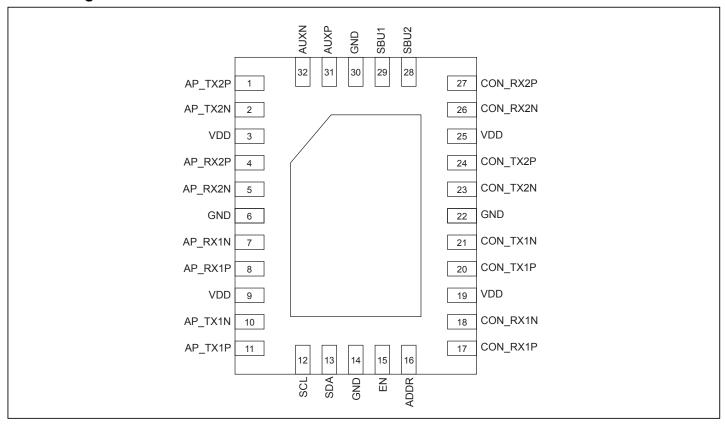


Figure 3-1 32-X2QFN Package Pin-out

3.2 Pin Description

Pin Name	Pin Number	Type	Description				
Power and G	Power and GND						
3, 9, 19, 25	VDD18	Power	1.8V power supply, +/- 5%				
6, 14, 22, 30, Center Pad	GND	Ground	Supply Ground				
Control Pins							
12	SCL	I	SCL is I2C control bus clock. Open drain structure. (3.3V tolerance)				
13	SDA	I/O	SDA is I2C control data clock. Open drain structure. (3.3V tolerance)				
15	EN	I	Chip Enable. With internal 300kΩ pull-up resistor. Low: Chip Power Down High: Normal Operation (Default)				
16	ADDR	I	The I2C address select. 3-level input pins. With internal 150k Ω pull-up and pull-down resistors.				
High Speed 1	/O Pins						
18, 17 27, 26	CON_RX1N, CON_RX1P CON_RX2P, CON_RX2N	I/O	Type-C receptacle RX/TX Channel CML input/output terminals. With selectable input termination between 50Ω to internal VbiasRx, $78k\Omega$ to internal VbiasRx or $78k\Omega$ to GND. With selectable output termination between 50Ω , $6k\Omega$ to internal VbiasTx or Hi-Z.				
21, 20 24, 23	CON_TX1N, CON_TX1P CON_TX2P, CON_TX2N	О	CML output terminals. With selectable output termination between 50Ω , $6k\Omega$ to internal VbiasTx or Hi-Z.				
1, 2 10, 11	AP_TX2P, AP_TX2N AP_TX1N, AP_TX1P	I/O	Type-C receptacle RX/TX Channel CML input/output terminals. With selectable input termination between 50Ω to VDD, $78k\Omega$ to internal VbiasRx or $78k\Omega$ to GND. With selectable output termination between 50Ω , $6k\Omega$ to internal VbiasTx or Hi-Z.				
4, 5 7, 8	AP_RX2P, AP_RX2N AP_RX1N, AP_RX1P	I	CML input terminals. With selectable input termination between 50Ω to internal Vbias-Rx, $78k\Omega$ to internal VbiasRx or $78k\Omega$ to GND.				
Side Band Si	gnal Pins						
28, 29	SBU2, SBU1	I/O	Type-C connector SBU signal connections				
31, 32	AUXP, AUXN	I/O	DisplayPort AUX CH differential signal connections				

4. Functional Description

4.1 Functional Block Diagram

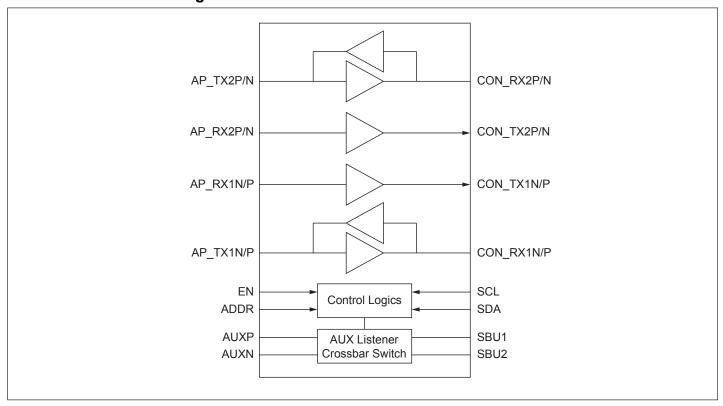


Figure 4-1 PI2DPX1066 Block Diagram

4.2 Operating Modes

4.2.1 Configuration Table

Byte 3 Bit [7:4]	AP_TX2	AP_RX2	AP_RX1	AP_TX1	AUXP	AUXN	Modes	
0000	X	X	X	X	X	X	Safe State (Hi-Z)	
0001	X	X	X	X	X	X	Safe State (Hi-Z)	
0010	CON_RX2 (DP0)	CON_TX2 (DP1)	CON_TX1 (DP2)	CON_RX1 (DP3)	SBU1	SBU2	4 lane DP + AUX	
0011	CON_RX2 (DP3)	CON_TX2 (DP2)	CON_TX1 (DP1)	CON_RX1 (DP0)	SBU2	SBU1	4 lane DP + AUX (flipped)	
0100	X	X	CON_TX1	CON_RX1	X	X	1 port USB3	
0101	CON_RX2	CON_TX2	X	X	X	X	1 port USB3 (flipped)	
0110	CON_RX2 (DP0)	CON_TX2 (DP1)	CON_TX1 (USB3)	CON_RX1 (USB3)	SBU1	SBU2	2 lane DP + USB3 + AUX	
0111	CON_RX2 (USB3)	CON_TX2 (USB3)	CON_TX1 (DP1)	CON_RX1 (DP0)	SBU2	SBU1	2 lane DP + USB3 + AUX (flipped)	
1000	CON_RX2 (USB3)	CON_TX2 (USB3)	CON_TX1 (DP1)	CON_RX1 (DP0)	SBU1	SBU2	USB3 + 2 lane DP + AUX	
1001	CON_RX2 (DP0)	CON_TX2 (DP1)	CON_TX1 (USB3)	CON_RX1 (USB3)	SBU2	SBU1	USB3 + 2 lane DP +AUX (flipped)	
<1010> ~ <1011>	-	-	-	-	Reserved		Reserved	
1100	CON_RX2	CON_TX2	CON_TX1	CON_RX1	X	X	2-port USB3 (USB3.2x2)	
<1101> ~ <1111>	-	-	-	-	-	-	Reserved	

Notes:

¹⁾ The high speed channels don't do any flip action. Only the AUX channel is flipped.

^{2) &}lt;0000> default at power on.

4.3 USB Mode

In the low power mode, the signal detector will still be monitoring the input channel. If a channel is in low power mode and the input signal is detected, the corresponding channel will wake-up immediately. If a channel is in low power mode and the signal detector is idle longer than 6ms, the receiver detection loop will be active again. If load is not detected, then the Channel will move to Device Unplug Mode and monitor the load continuously. If load is detected, it will return to Low Power Mode and receiver detection will be active again per 6ms.

Table 4-1. The I/O Termination Resistance Under Different Conditions

Symbol	Parameter	Resistance	Units
RX terminal			
Rin-pd	Input resistance at power down mode	78k to GND	Ω
Rin-U0	Input resistance at U0 condition	50 to VDD	Ω
Rin-U1	Input resistance inU1 (1)	50 to VDD	Ω
Rin-U2/U3	Input resistance in U2/U3 (1)	50 to VDD	Ω
Rin-RXDet	Input resistance in RXDET (1)	78k to VbiasRx	Ω
TX terminal			
Rout-pd	Output resistance at power down mode	78k to GND	Ω
Rout-U0	Output resistance at U0 condition	50 to VbiasTx1	Ω
Rout-U1	Output resistance in U1 mode (1)	6k to VbiadTx1	Ω
Rout-U2/U3	Output resistance in U2/U3 mode (1)	6k to VbiasTx2	Ω
Rout-RXDet	Output resistance in RXDET mode (1)	6k to VbiasTx2	Ω

Notes: (1) The value of Rin-RxDet will be updated only after the receiver evaluation has been done. Thus, the value can be 50Ω or $78k\Omega$ pull-low.

4.4 DisplayPort Mode

The ON/OFF of each DP channel is controlled by the Aux lane count.

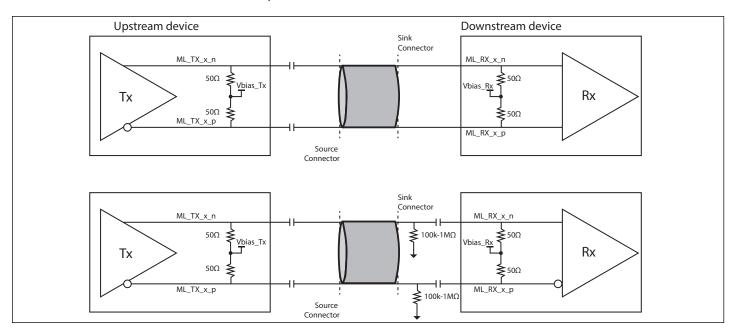


Figure 4-2 DisplayPort Main Link Connection Diagram

4.4.1 DisplayPort Main Link

The electrical sub-block of a DP Main-Link consists of up to four differential pairs. The DP TX drives doubly terminated, AC-coupled differential pairs, as shown in Figure 4-2 in a manner compliant with the Main-Link Transmitter electrical specification.

Table 4-2. DP Low Power Mode Description

PM_State	Mode Description			
1	Active mode	Data transfer (normal operation); The AUX monitor is actively monitoring for Link Training unless it is disabled through I2C interface. When programmed to DisplayPort mode, all Main Link outputs are Enabled by default.		
2	Standby mode	Low power consumption (I2C interface is active; AUX monitor is inactive); Main Link outputs are disabled; the Sink device has de-asserted HPD		
3	D3 power saving mode	Low power consumption (I2C interface is active; AUX monitor is active). Main link outputs are disabled. It is entered when AUX command receives request to enter D3 low power state. It is exited after HPD LOW for $t_{\rm HPD}$ or EN = 0 or AUX command receives request to exit.		
4	Power down mode(OFF)	Lowest power consumption (EN = 0); all outputs are high-impedance; I2C interface is turned off, all inputs are ignored, I2C register is reset		

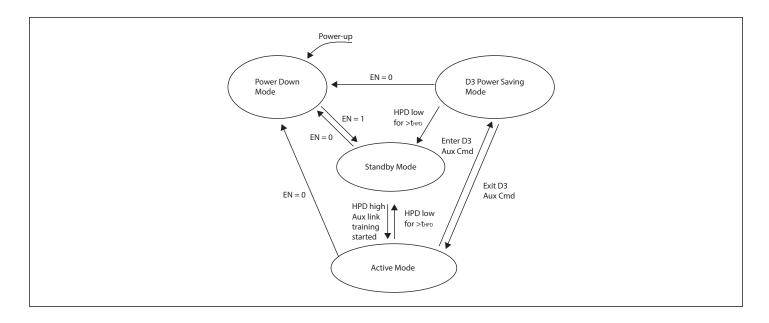


Figure 4-3 DisplayPort Operation mode

4.4.2 DisplayPort Aux Channel

The AUX CH of DP is a half-duplex, bidirectional channel. The DP device with DPTX such as a Source device is the master of the AUX CH (called AUX CH Requester), while the device with DPRX such as a Sink device is the slave (AUX CH Replier). As the master, the Source device must initiate a Request Transaction, to which the Sink device responds with a Reply Transaction.

The system design of a DFP_D on a USB Type-C connector connected to a UFP_D on a USB Type-C connector using a USB Type-C to USB Type-C Cable. The $2M\Omega$ pull-down resistors on SBU1 and SBU2 are representative of the leakage of ESD and EMI/RFI components including termination to ensure no floating nodes, and are intended to show compliance with SBU Termination in USB Type-C r1.1. The plug orientation switch may be replaced by AUX polarity inversion logic in the DisplayPort transmitter or receiver, controlled by the plug orientation detection mechanism associated with the USB Type-C Receptacle. Note: The 3.3V levels in the Adapters are derived from VCONN because not all DisplayPort UFP_D devices provide DP_PWR.

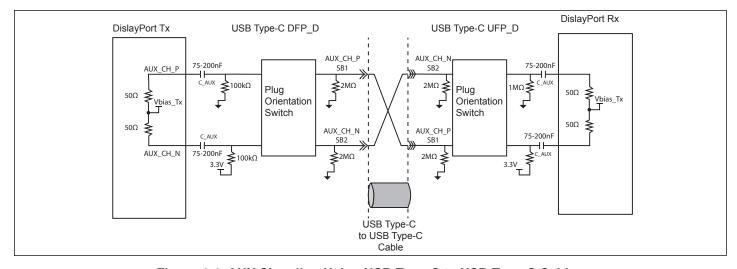


Figure 4-4 AUX Signaling Using USB Type-C to USB Type-C Cables

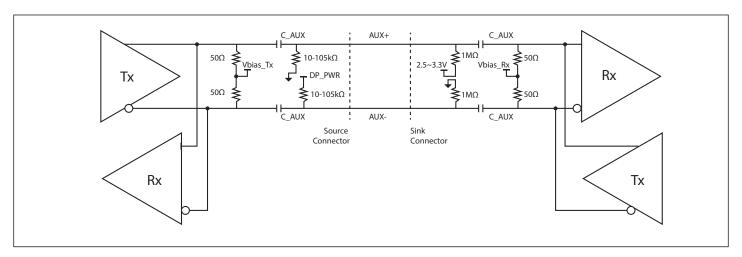


Figure 4-5 DisplayPort Aux Channel Connection

4.5 CTLE Equalization, Flat Gain, Output Linearity and Chip Enable Controls

Table 4-3. CTLE Equalization Gain. (Typical Values at FG = 0dB)

12C F	Register Setting EQ	2<2:0>		Equalizer S	Setting (dB)	
EQ<2>	EQ<1>	EQ<0>	@1.35GHz	@2.5GHz	@4GHz	@5GHz
0	0	0	0 (Default)	0.1 (Default)	0.6 (Default)	1.1 (Default)
0	0	1	0	0.4	1.4	2.2
0	1	0	0.1	0.9	2.4	3.6
0	1	1	0.4	1.8	4.0	5.4
1	0	0	1.1	3.2	5.9	7.4
1	0	1	1.7	4.4	7.3	8.8
1	1	0	2.7	5.9	8.9	10.3
1	1	1	3.6	7.1	10.0	11.4

Table 4-4. Flat Gain Setting (FG)

I2C regist	er FG[1:0]	Flat Gain setting
0	0	-4 dB
0	1	-2 dB
1	0	+0 dB (Default)
1	1	+2 dB

Table 4-5. Chip Enable Control

EN pin (pin #15)	Channel Operation
0	Disabled
1	Enabled (Default)

4.6 Detail Programming Registers

4.6.1 I2C Slave Address Selections

Table 4-6. I2C Slave Address Selections

	I2C Slave Address Assignment						
A6	A5	A4	A3	A2	A1	A0	ADDR (Pin 16)
1	0	1	0	0	0	1	L
1	0	1	0	0	1	0	M/F
1	0	1	0	1	0	0	Н

4.6.2 Indexed Read/Write Protocol

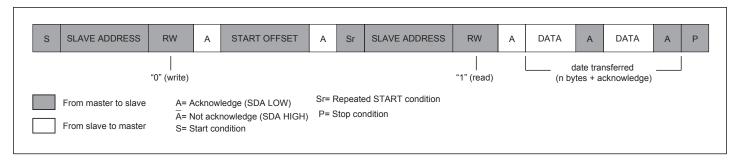


Figure 4-6 Indexed Read

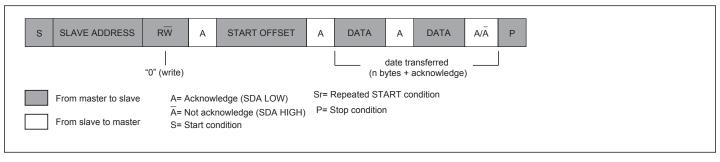


Figure 4-7 Indexed Write

4.7 I2C Register Definitions

4.7.1 BYTE 0 (Revision and Vendor ID Register)

Bit	Type	Power up condition	Comment
7	RO	0	
6	RO	0	Pavision ID 0000
5	RO	0	Revision ID = 0000
4	RO	0	
3	RO	0	
2	RO	0	Vandan ID 0011
1	RO	1	Vender ID = 0011
0	RO	1	

4.7.2 BYTE 1 (Device Type/Device ID Register)

Bit	Type	Power up condition	Comment
7	RO	0	
6	RO	0	Reserved
5	RO	0	
4	RO	1	
3	RO	0	
2	RO	0	D ID 0011
1	RO	1	Device ID = 0011
0	RO	1	

4.7.3 BYTE 2 (Byte count Register 32 bytes)

	Direct (byte count regions of bytes)				
Bit	Type	Power up condition	Comment		
7	RO	0			
6	RO	0			
5	RO	1			
4	RO	0	I2C register byte count = 32 bytes		
3	RO	0			
2	RO	0			
1	RO	0			
0	RO	0			

4.7.4 BYTE 3 (Channel assignment of RXDET_EN and configuration mode)

Bit	Туре	Power up condition	Comment
7	R/W	0	
6	R/W	0	On south and an atting Defends and the A 2.1
5	R/W	0	Operation mode setting. Refer to section 4.2.1
4	R/W	0	
3	R/W	0	Enable/Disable Generic Application mode 0 – Disable 1 – Enable
2	R/W	0	Enable/Disable RXDET_EN 0 – RXDET is Enabled. 1 – RXDET is Disabled.
1	R/W	0	Reserved
0	R/W	0	Reserved

4.7.5 BYTE 4 (Override the power down control and HPD signal bit)

Bit	Type	Power up condition	Comment
7	R/W	0	CON_RX1 power down override 0 – Do not force the CON_RX1 to power down state 1 – Force the CON_RX1 to power down state
6	R/W	0	CON_TX1 power down override 0 – Do not force the CON_TX1 to power down state 1 – Force the CON_TX1 to power down state
5	R/W	0	CON_TX2 power down override 0 – Do not force the CON_TX2 to power down state 1 – Force the CON_TX2 to power down state
4	R/W	0	CON_RX2 power down override 0 – Do not force the CON_RX2 to power down state 1 – Force the CON_RX2 to power down state
3	R/W	0	Decoursed
2	R/W	1	Reserved
1	R/W	0	HPD signal bit setting.
0	R/W	0	Reserved

4.7.6 BYTE 5 Equalization and Flat gain setting of CON_RX2)

Bit	Type	Power up condition	Comment
7	R/W	0	Reserved
6	R/W	0	CON0_EQ<2> Equalizer setting
5	R/W	0	CON0_EQ<1> Equalizer setting
4	R/W	0	CON0_EQ<0> Equalizer setting
3	R/W	1	CON0_FG<1> Flat gain setting
2	R/W	0	CON0_FG<0> Flat gain setting
1	R/W	0	Reserved
0	R/W	0	Reserved

4.7.7 BYTE 6 (Equalization and Flat gain setting of CON_TX2)

Bit	Type	Power up condition	Comment
7	R/W	0	Reserved
6	R/W	0	CON1_EQ<2> Equalizer setting
5	R/W	0	CON1_EQ<1> Equalizer setting
4	R/W	0	CON1_EQ<0> Equalizer setting
3	R/W	1	CON1_FG<1> Flat gain setting
2	R/W	0	CON1_FG<0> Flat gain setting
1	R/W	0	Reserved
0	R/W	0	Reserved

4.7.8 BYTE 7 (Equalization and Flat gain setting of CON TX1)

T.7.0 L	The Birth (Equalization and Flat gain obtaing of oots_TXT)			
Bit	Type	Power up condition	Comment	
7	R/W	0	Reserved	
6	R/W	0	CON2_EQ<2> Equalizer setting	
5	R/W	0	CON2_EQ<1> Equalizer setting	
4	R/W	0	CON2_EQ<0> Equalizer setting	
3	R/W	1	CON2_FG<1> Flat gain setting	
2	R/W	0	CON2_FG<0> Flat gain setting	
1	R/W	0	Reserved	
0	R/W	0	Reserved	

4.7.9 BYTE 8 (Equalization and Flat gain setting of CON_RX1)

Bit	Type	Power up condition	Comment
7	R/W	0	Reserved
6	R/W	0	CON3_EQ<2> Equalizer setting
5	R/W	0	CON3_EQ<1> Equalizer setting
4	R/W	0	CON3_EQ<0> Equalizer setting
3	R/W	1	CON3_FG<1> Flat gain setting
2	R/W	0	CON3_FG<0> Flat gain setting
1	R/W	0	Reserved
0	R/W	0	Reserved

4.7.10 BYTE 9 (AUX Flip control)

Bit	Type	Power up condition	Comment
7	R/W	0	Reserved
6	R/W	1	Reserved
5	R/W	1	Reserved
4	R/W	0	Reserved
3	R/W	0	Reserved
2	R/W	0	Reserved
1	R/W	0	AUX flip for AUXSBU1/2 and AUXP/N 0 – Flip is disabled 1 – Flip is enabled
0	R/W	0	DP FLIP DP flip for ALL CONx channels 0 – DP Flip is Disabled 1 – DP Flip is Enabled

4.7.11 BYTE 10 (Feature control of the CON0 and CON1)

Bit	Type	Power up condition	Comment
7	R/W	0	Reserved
6	R/W	1	Reserved
5	R/W	0	when Byte3 bit3 = 1, this bit Enable/Disable the deep slumber mode of CON0 and CON1 0 – Enable Deep slumber mode 1 - Disabled Deep slumber mode
4	R/W	0	Reserved
3	R/W	0	Reserved
2	R/W	0	Reserved
1	R/W	1	Reserved
0	R/W	0	Reserved

4.7.12 BYTE 11 (Feature control of the CON2 and CON3)

Bit	Туре	Power up condition	Comment
7	R/W	0	Reserved
6	R/W	1	Reserved
5	R/W	0	when Byte3 bit3 = 1, this bit Enable/Disable the deep slumber mode of CON2 and CON3 0 - Enable Deep slumber mode 1 - Disabled Deep slumber mode
4	R/W	0	Reserved
3	R/W	0	Reserved
2	R/W	0	Reserved
1	R/W	1	Reserved
0	R/W	0	Reserved

4.7.13 BYTE 12 (AUX switch and AUX listener)

Bit	Туре	Power up condition	Comment
7	R/W	0	
6	R/W	0	
5	R/W	1	Reserved
4	R/W	1	
3	R/W	0	
2	R/W	0	AUX_EN# 0 – Normal operation 1 – Disable AUX Listener and AUX Switch
1	R/W	0	AUX_Listener_EN# 0 - Normal operation 1 - Disable AUX Listener
0	R/W	1	Reserved

4.7.14 BYTE 13

Bit	Type	Power up condition	Comment
7	RO	N/A	
6	RO	N/A	
5	RO	N/A	
4	RO	N/A	D
3	RO	N/A	Reserved
2	RO	N/A	
1	RO	N/A	
0	RO	N/A	

4.7.15 BYTE 14

Bit	Туре	Power up condition	Comment
7	RO	N/A	
6	RO	N/A	
5	RO	N/A	
4	RO	N/A	Reserved
3	RO	N/A	Reserved
2	RO	N/A	
1	RO	N/A	
0	RO	N/A	

4.7.16 BYTE 15

Bit	Type	Power up condition	Comment
7	RO	N/A	
6	RO	N/A	
5	RO	N/A	
4	RO	N/A	Reserved
3	RO	N/A	Reserved
2	RO	N/A	
1	RO	N/A	
0	RO	N/A	

4.7.17 BYTE 16 (AUX and HPD status)

Bit	Type	Power up condition	Comment
7	RO	N/A	Reserved
6	RO	N/A	Reserved
			AUX_IDLE_DET#
5	RO	N/A	Detect the AUX activities "0" – Idle "1" – has activities
4	RO	N/A	DP_HPD The condition of HPD 0 - De-asserted 1 - Asserted
3	RO	N/A	Reserved
2	RO	N/A	Reserved
1	RO	N/A	Reserved
0	RO	N/A	Reserved

4.7.18 BYTE 17

Bit	Туре	Power up condition	Comment
7	RO	0	
6	RO	0	
5	RO	0	
4	RO	1	Reserved
3	RO	0	Reserved
2	RO	1	
1	RO	0	
0	RO	0	

4.7.19 BYTE 18 (DPCD Address 00101h: Lane Count Set status)

Bit	Type	Power up condition	Comment
7	RO	0	LANE_COUNT_SET
6	RO	0	Main-Link Lane Count = Value.
5	RO	0	Bit<4:0>LANE_COUNT_SET
4	RO	0	Three values are supported. All other values are RESERVED.
3	RO	0	Note: Because the upstream device is required to set this value within the MAX_LINK_ RATE register (DPCD Address 00001h), there is no power-on reset default value for
2	RO	1	this field. It is suggested to program this field to 1h. (See the Note within the descrip-
1	RO	0	tion for the LINK_BW_SET register (DPCD Address 00100h.) 1h = 1 lane (Lane 0 only)
0	RO	0	2h = 2 lanes (Lanes 0 and 1 only) 4h = 4 lanes A Source device may choose any lane count as long as it does not exceed the capability of the DPRX. For DPCD Ver.1.0: Bits <7:5> = RESERVED. Read all 0's. For DPCD Ver.1.1: Bits <6:5> = RESERVED. Read all 0's. Bit 7 = ENHANCED_FRAME_EN 0 = Enhanced Framing symbol sequence is not enabled. 1 = Enhanced Framing symbol sequence for BS and SR is enabled. Applicable to SST-only mode. A DPTX must set this bit to 1 when the DPRX has the ENHANCED_FRAME_CAP bit in the MAX_LANE_COUNT register (DPCD Address 00002h, bit 7) set to 1.

4.7.20 BYTE 19 - BYTE 30

Bit	Type	Power up condition	Comment
7	RO	0	
6	RO	0	
5	RO	0	
4	RO	0	Reserved
3	RO	0	Reserved
2	RO	0	
1	RO	0	
0	RO	0	

4.7.21 BYTE 31 (DPCD Address 00600h: DP Power set status)

Bit	Туре	Power up condition	Comment
7	RO	0	SET_POWER_STATE
6	RO	0	Bit 2:0
5	RO	0	001 = Set local Sink device and all downstream Sink devices to D0 (normal operation mode).
4	RO	0	010 = Set local Sink device and all downstream Sink devices to D3 (power-down
3	RO	0	mode). 101 = Set Main-Link for local Sink device and all downstream Sink devices to D3
2	RO	0	(power-down mode), keep AUX block fully powered, ready to reply within a Response
1	RO	0	Timeout period of 300us.
0	RO	1	All other values are RESERVED.

5. Electrical Specification

5.1 Absolute Maximum Ratings

Supply Voltage to Ground Potential	0.5V to V _{DD} +0.3V
Voltage Input to High Speed Differential Pins	0.5V to V _{DD}
Voltage Input to Low Speed Pins (SCL, SDA)	0.5V to +3.6V
Voltage Input to Low Speed Pins (AUXP/N, SBU1, SBU2)	0.5V to +3.6V
Voltage Input to EN	0.5V to VDD +0.3V
Storage Temperature	65°C to +150°C
Junction Temperature	125°C
ESD HBM	±2000V
ESD CDM	±500V

Note

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to beyond the absolute maximum rating conditions for extended periods may affect interoperability and degradation of device reliability and performance.

5.2 Recommended Operating Conditions

Over operating temperature range (unless otherwise noted)

Symbol	Parameter	Min.	Тур.	Max	Units
Vdd	VDD Supply Voltage	1.71	1.8	1.89	V
VDD_Noise	Supply Noise up to 50 MHz ⁽¹⁾			50	mVpp
Vrx_cm	Input source common-mode noise			150	mVpp
Cac_coupling	System AC coupling capacitance	75		265	nF
TA	Ambient Temperature, Industrial I-temp range	-40(1)		+85	°C

Notes:

5.3 Thermal Information

Symbol	Parameter	32-pin X2QFN	Unit
Theta JA	Junction-to-ambient resistance	42.09	°C/W

5.4 Power Consumption

Over operating temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
ION_USB_2DP	Current in 1-port USB3.2 Gen 2x1 & 2-lane DP1.4/DP2.1 (UHBR10)	EN = 1, HPD = active, 1 port USB 3.2 Gen 2x1 & 2 Lane DP mode		160	220	mA
ION_4DP	Current in DP mode by 4 Lane, VDD=1.8V	EN = 1, HPD = active, 4 Lane DP mode, Lane count = 4		160	220	mA
ION_USBx1	Current in USB3.2 Gen 2x1 U0 mode, VDD = 1.8V	EN = 1, USB3.2 Gen2x1 U0 mode		80	110	mA
ION_USBx2	Current in USB3.2 Gen 2x2 U0 mode, VDD = 1.8V	EN = 1, USB3.2 Gen2x2 U0 mode		160	220	mA

⁽¹⁾ The minimum temperature -40°C can be guaranteed by design

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
IU3_Gen2x1	Average Current in USB3.2 Gen 2x1 U3 mode, VDD = 1.8V (per channel)	EN = 1, USB3.2 Gen2x1 U3 mode		0.9	1.5	mA
ID3	Current in D3 Power saving mode, VDD = 1.8V	EN = 1, HPD = active, 4 Lane DP mode, Enter D3 mode		1.2	1.7	mA
Iunplug	Current in Unplug mode, VDD = 1.8V	EN = 1		700	1000	uA
IENB	Disabled mode	EN = 0		25	50	uA

5.5 AC/DC Characteristics

 $(VDD = 1.8V \pm 5\% TA = -40 \text{ to } 85^{\circ}C)$

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit	
Vdd	Supply voltage		1.71	1.8	1.89	V	
USB3.2 Receiver	(RX) Electrical Specification						
Crx-parasitic	Rx input capacitance	input capacitance At 5GHz			1.0	pF	
Rrx-diff-dc	DC Differential Input Impedance		72		120		
Rrx-single-dc	DC single ended input impedance to guarantee RxDet	Measured with respect to GND over a voltage of 500mV max	18		30	Ω	
Zrx-hiz-dc-pd	DC input CM input impedance for V>0 during reset or power down	(Vcm = 0 to 500mV)	25			kΩ	
VRX-CM-AC-P	Rx common mode peak voltage	AC up to 5GHz			150	mVpeak	
Trx_tj (5G)	USB3.2 Gen2 Rx total jitter	Measured after RX EQ of Scope at 5GHz (Figure 5, 6)			0.394	UI	
Trx_dj(5G)	USB3.2 Gen2 Rx deterministic jitter	Measured after RX EQ of Scope at 5GHz (Figure 5, 6)			0.21	UI	
Trx_tj (2.5G)	USB3.2 Gen1 Rx total jitter	Measured after RX EQ of Scope at 2.5GHz (Figure 5, 6)			0.45	UI	
Trx_dj(2.5G)	USB3.2 Gen1 Rx deterministic jitter	Measured after RX EQ of Scope at 2.5GHz (Figure 5, 6)			0.285	UI	
USB3.2 Transmi	tter (TX) Electrical Specification						
Ctx-parasitic	Tx input capacitance				1.1	pF	
VTX-DIFF-PP_5G	Output differential p-p voltage Swing	Differential Swing VTX-D+ - VTX-D- at -1dB compression point of 5GHz		0.9		Vppd	
VTX-DIFF-PP_100M	Output differential p-p voltage Swing	Differential Swing VTX-D+ - VTX-D- at -1dB compression point of 100MHz		0.91		Vppd	
Rtx-diff-dc	DC Differential TX Impedance		72		120	Ω	
VTX-RCV-DET	The amount of Voltage change allowed during RxDet	Type-C Tx Spec +/- 60mA			600	mV	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Itx-short	Transmitter short circuit current to ground		-60		60	mA
Rtx-dc-cm	Common mode DC output Impedance		18		30	Ω
VTX-C	Common-Mode Voltage	VTX-D+ + VTX-D- /2	V _{DD} -		Vdd	V
VTX-CM-AC-PP- ACTIVE	Active mode TX AC common mode voltage	V _{TX-D+} + V _{TX-D-} for both time and amplitude			100	mVpp
$ m V$ TX-CM-DC-Active-Idle-Delta $^{(1)}$	Common mode delta voltage Avguo (Vtx-d+ +Vtx-d-)/2 -Avgu1 (Vtx-d+ +Vtx-d-)/2	Between U0 and U1/U2/U3			200	mVpeak
High-Speed Cha	nnel Electrical Specification					
t pd	Channel latency	From input pin to output pin		150	300	Ps
GP_USB	Peaking gain (Compensation at 5GHz, relative to 100MHz, 100mVp-p sine wave input)	EQ<2:0> = 000 EQ<2:0> = 001 EQ<2:0> = 010 EQ<2:0> = 011 EQ<2:0> = 100 EQ<2:0> = 101 EQ<2:0> = 111 EQ<2:0> = 111		1.1 2.2 3.6 5.4 7.4 8.8 10.3 11.4		dB
		Variation around typical	-2		+2	dB
Gp_dp	Peaking gain (Compensation at 4.05GHz, relative to 100MHz, 100mVp-p sine wave input)	EQ<2:0> = 000 EQ<2:0> = 001 EQ<2:0> = 010 EQ<2:0> = 011 EQ<2:0> = 100 EQ<2:0> = 101 EQ<2:0> = 110 EQ<2:0> = 111		0.6 1.4 2.4 4.0 5.9 7.3 8.9		dB
		Variation around typical	-2		+2	dB
Gr	Flat gain (100MHz, EQ<2:0>=000)	FG<1:0> = 00 FG<1:0> = 01 FG<1:0> = 10 FG<1:0> = 11		-4 -2 0 +2		dB
		Variation around typical	-2		+2	dB
Vsw_100M	Output linear swing (at 100MHz)	EQ<2:0>=000		910		mVppd
Vsw_5G	Output linear swing (at 5GHz)	EQ<2:0>=000		900		mVppd
DDNEXT (2)	Differential near-end crosstalk	100MHz to 5GHz		-40		dB
				_		1

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V	I	100MHz to 5GHz, EQ<2:0> = 000, FG<1:0> = 10, Figure 5-5		0.5		
Vnoise_in	Input-referred noise	100MHz to 5GHz, EQ<2:0> = 111, FG<1:0> = 10, Figure 5-5		0.3		mVrms
Vyvovon oven	Output referred reise	100MHz to 5GHz, EQ<2:0> = 000, FG<1:0> = 10, Figure 5-5		0.3		3.7
Vnoise_out	Output-referred noise	100MHz to 5GHz, EQ<2:0> = 111, FG<1:0> = 10, Figure 5-5		0.3		mVrms
S11DM	I/P Differential Mode Return loss	4.05GHz		-14.5		dB
STIDM	(DP) AP_RX2P/N, AP_RX1N/P	5GHz		-12.7		шь
	I/P Differential Mode Return loss	4.05GHz		-12.35		
S11DM	(USB/DP) AP_TX2P/N, AP_TX- 1N/P	5GHz		-10.7		dB
S11CM	I/P Common Mode Return loss (DP)	4.05GHz		-16.3		dB
OTTOWI	AP_RX2P/N, AP_RX1N/P	5GHz		-15		шь
S11CM	I/P Common Mode Return loss	4.05GHz		-12.6		
	(USB/DP) AP_TX2P/N, AP_TX- 1N/P	5GHz		-10.3		dB
S22DM	O/P Differential Mode Return loss	4.05GHz		-13.6		dB
322DW	(DP) AP_RX2P/N, AP_RX1N/P	5GHz		-12.1		шь
	O/P Differential Mode Return loss	4.05GHz		-11.3		
S22DM	(USB/DP) AP_TX2P/N, AP_TX- 1N/P	5GHz		-9.6		dB
S22CM	O/P Common Mode Return loss	4.05GHz		-19.7		dB
322CIVI	(DP) AP_RX2P/N, AP_RX1N/P	5GHz		-16.7		шь
	O/P Common Mode Return loss	4.05GHz		-12		
S22CM	(USB/DP) AP_TX2P/N, AP_TX- 1N/P	5GHz		-9.7		dB
LFPS and Unpl	ug Detectors Electrical Specification			_		
Fтн	LFPS frequency detector	Detect the frequency of the input CLK pattern	100		400	MHz
Vrx-lfps-det- diff-p	LFPS detect threshold	LFPS signal threshold in U1/U2/U3 mode, the input impedance is set to 50Ω	100		300	mVppd
VTH_UPLUG	LFPS Unplug mode detect threshold	LFPS signal threshold in Unplug mode. The input impedance is set to $78K\Omega$.	200		600	mVppd
Trxdect_on	RX_DET response time	RX termination changes from $78 \mathrm{K}\Omega$ to 50Ω			15	mS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ton_save	Ton from USB power saving mode to active mode (U1/U2/U3 to U0)	Resume time from U1/U2/U3 back to U0 from LFPS detection. The termination resistor remains at 50Ω .			5	μS
DisplayPort Elec	trical Specification			J.		ı
VTX-C	Common-Mode Voltage	VTX-D+ + VTX-D- /2	V _{DD} -		V _{DD}	V
VTX-AC-CM_HBR_ RBR	TX AC common mode voltage for HRB and RBR.	Measured using an 8b/10b pat-			20	mVrms
VTX-AC-CM_HBR2	TX AC common mode voltage for HBR2	tern with 50% transition density			30	mVrms
VTX-DIFFp-p-Level0	Differential peak-to-peak output voltage swing Level 0	Tested with Pre-emphasis at	0.34	0.4	0.46	V
VTX-DIFFp-p-Level1	Differential peak-to-peak output voltage swing Level 1	Level 0 = 0dB Level 1 = 3.5dB	0.51	0.6	0.68	V
VTX-DIFFp-p-Level2	Differential peak-to-peak output voltage swing Level 2	Level $2 = 6.0 \text{ dB}$	0.69	0.8	0.92	V
Tj_Tx Differ-	HBR3 (8.1Gbps)				0.27	UI
	HBR2 (5.4Gbps))			0.27	UI
ential Noise Budget	HBR (2.7Gbps)	Measured at Tx output pins			0.294	UI
	RBR (1.62Gbps)				0.18	UI
AUX Channel Cı	cossbar Switch and AUX Listener Elect	rical Specification				
Vauxdc	AUX switch voltage range		0		3.3	V
Vaux-diff_peak	AUX switch peak-to-peak voltage		0.29		1.38	V
BW	-3dB bandwidth		100			MHz
Ron	The Resistance of AUX On	VCC = 1.8V; VI = 0 to 0.4V for AUXp; VI = 2.4V to 3.6V for AUXn; Tests shall be performed in both normal and inverted orientations.			10	Ω
Con	Input capacitance at SBU1, SBU2, AUXP or AUXN				10	pF
Ileak	Input leakage current at SBU1, SBU2, AUXP or AUXN	Measured at Vin(max) = 1.8V			15	μΑ
Ioff	Back current protection limit	When VDD is OFF and input voltage is 1.8V			10	uA
VT(AUX_listener)	Threshold of the AUX listener	VCC = 1.8V	100		220	mVPPd

Note:

Measured using a vector-network analyzer (VNA) with -15dbm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω .

Subtract the Channel Gain from the Total Gain to get the Actual Crosstalk

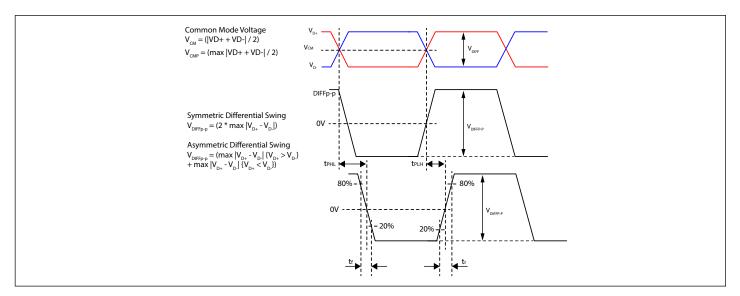


Figure 5-1 Definition of Peak-to-peak Differential Voltage

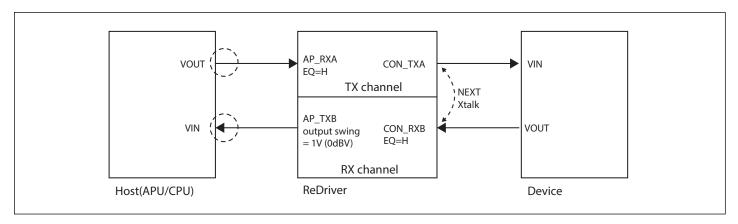


Figure 5-2 NEXT Crosstalk Definition

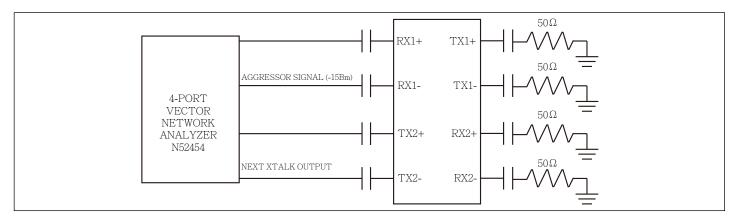


Figure 5-3 NEXT Channel-isolation Test Configuration

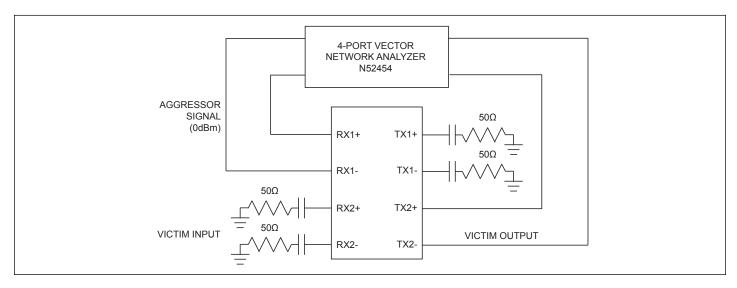


Figure 5-4 FEXT Channel-isolation Test Configuration

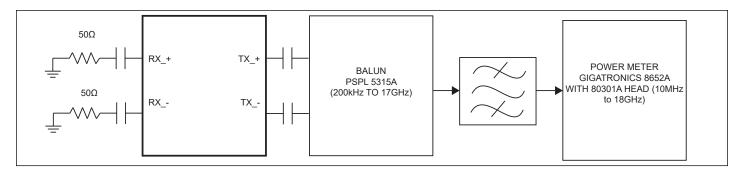
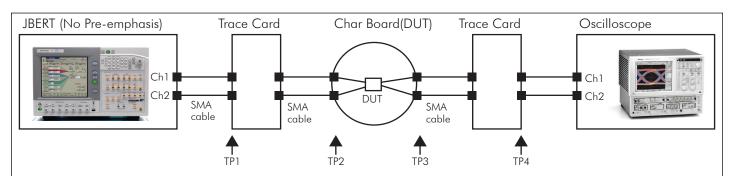



Figure 5-5 Noise Test Configuration

- 1) Trace card between TP1 and TP2 is designed to emulate 6-48" of FR4. Trace width -4 mils,100Ω differnetial impedance
- 2) All jitter is measured at a BER of 10-9
- 3) Residual jitter reflects the total jitter measured at TP4 jitter minus TP1 jitter
- 4) VDD = 3.3V, $RT = 50\Omega$
- 5) The input signal from JBERT does not have any pre-emphasis.

Figure 5-6 AC Electrical Parameter Test Setup

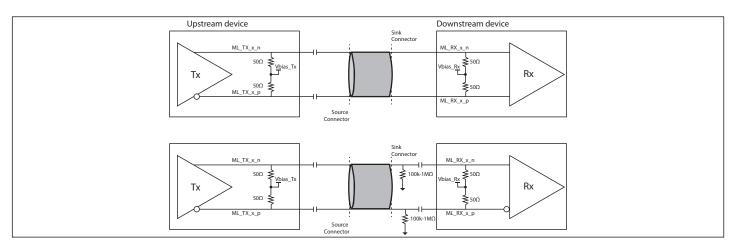


Figure 5-7 High-speed Chanel Test Circuit

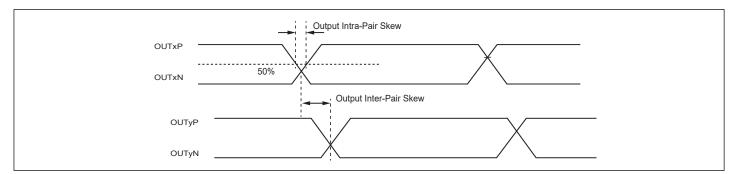


Figure 5-8 Intra and Inter-pair Differential Skew Definition

5.3 I2C Electrical Specification and Timing

5.3.1 Characteristics of the SDA and SCL I/O stages

Symbol	Parameter	Conditions	Min	Max	Units
VIL	LOW-level input voltage		-0.5	0.4	V
VIH	HIGH-level input voltage		1.2		V
Vhys	Hysteresis of Schmitt trigger inputs		0.05VDD		V
Vol	LOW-level output voltage	Open-drain or open-collector at 3mA sink current; VDD >2V	0	0.4	V
Iol	LOW-level output current	Vol = 0.4V	20		mA
tof	Output fall time from VIHmin to VILmax		12	120	ns
tsp	Pulse width of spikes that must be suppressed by the input filter		0	50	ns
Iı	Input current each I/O pin	0.1VDD < VI < 0.9VDDmax	-10	+10	uA
Сі	Capacitance for each I/O pin			10	pF
fscl	SCL clock frequency		10	1000	kHz
thd;sta	Hold time (repeated) START condition	After this period, the first clock pulse is generated.	0.26		us
tlow	LOW period of the SCL clock		0.5		us
thigh	HIGH period of the SCL clock		0.26		us
tsu;sta	Set-up time for a repeated START condition		0.26		us
tsu;dat	Data set-up time		50		ns
Tr	Rise time of both SDA and SCL signals			120	ns
Tf	Fall time of both SDA and SCL signals		12	120	ns
tsu;sto	Set-up time for STOP condition		0.26		us
tbuf	Bus free time between a STOP and START condition		0.5		us
Cb	Capacitive load for each bus line			550	pF
tvd;dat	Data valid time			0.45	us
tvd;ack	Data valid acknowledge time			0.45	us

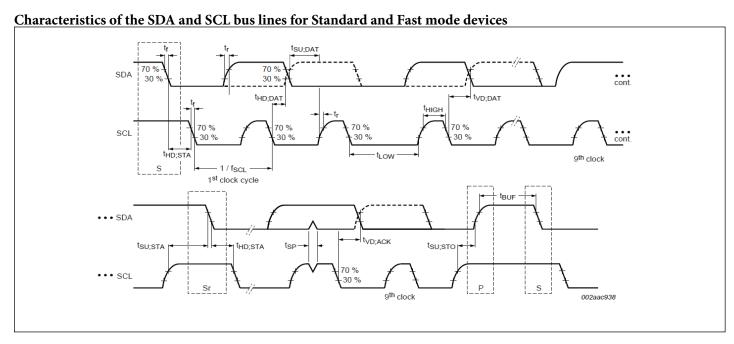
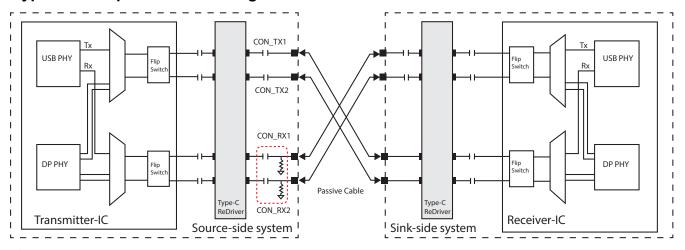


Figure 5-9 Definition of Timing for F/S-mode Devices on the I2C Bus



6. Applications

Note:

Information in the following applications sections is not part of the component specification, and does not warrant its accuracy or completeness. Customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

6.1 Type-C AC-cap Connection Diagram

Note: AC-cap is recommended for potential Type-C Sink Device compatibility (interoperability) issues because of the different Type-C legacy implementation, not latest Type-C Logo compiant devices.

Figure 6-1 Type-C Coupling Capacitor Connection Diagram

6.2 Reference Application Schematics

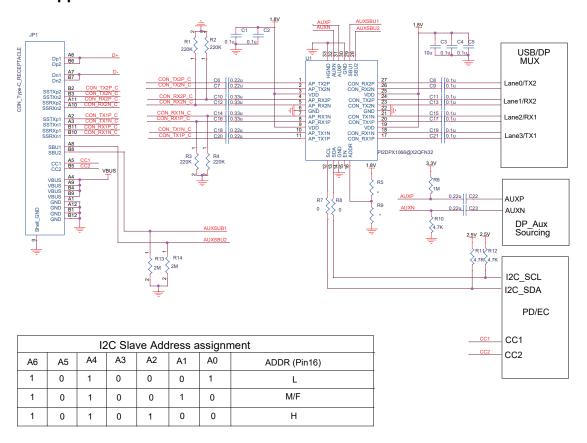


Figure 6-2 Reference EVB Demo Board Application Schematic - Sink Receptacle Application Circuit

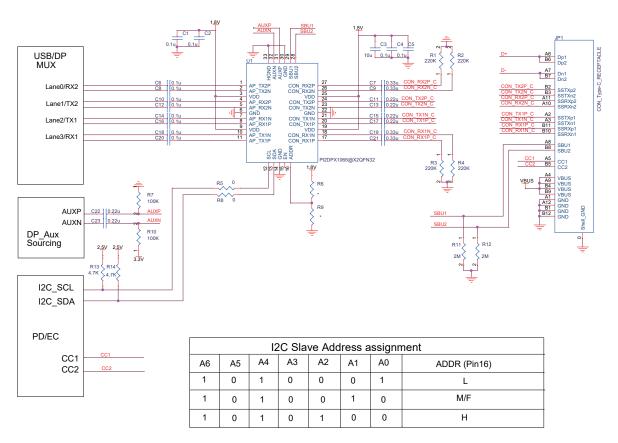


Figure 6-3 Reference EVB Demo Board Application Schematic - Source Application Circuit

6.3 PCB Layout Guideline

6.3.1 General Power and Ground Guideline

To provide a clean power supply for Diodes high-speed device, few recommendations are listed below:

- Power (VDD) and ground (GND) pins should be connected to corresponding power planes of the printed circuit board directly without passing through any resistor.
- The thickness of the PCB dielectric layer should be minimized such that the VDD and GND planes create low inductance paths.
- One low-ESR 0.1uF decoupling capacitor should be mounted at each VDD pin or should supply bypassing for at most two VDD pins. Capacitors of smaller body size, i.e. 0402 package, is more preferable as the insertion loss is lower. The capacitor should be placed next to the VDD pin.
- One capacitor with capacitance in the range of 4.7uF to 10uF should be incorporated in the power supply decoupling design as well. It can be either tantalum or an ultra-low ESR ceramic.
- A ferrite bead for isolating the power supply for Diodes high-speed device from the power supplies for other parts on the printed circuit board should be implemented.
- Several thermal ground vias must be required on the thermal pad. 25-mil or less pad size and 14-mil or less finished hole are recommended.

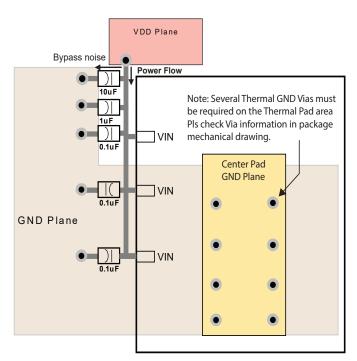


Figure 6-4 Decoupling Capacitor Placement Diagram

6.3.2 High-speed Differential Signal Routing

Well-designed layout is essential to prevent signal reflection:

- For 90Ω differential impedance, width-spacing-width micro-strip of 6-7-6 mils is recommended; for 100Ω differential impedance, width-spacing-width micro-strip of 5-7-5 mils is recommended.
- Differential impedance tolerance is targeted at $\pm 15\%$.

Figure 6-5 Trace Width and Clearance of Micro-strip and Strip-line

• For micro-strip, using 1/2oz Cu is fine. For strip-line in 6+ PCB layers, 1oz Cu is more preferable.

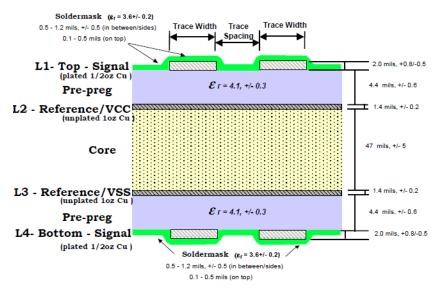


Figure 6-6 4-Layer PCB Stack-up Example

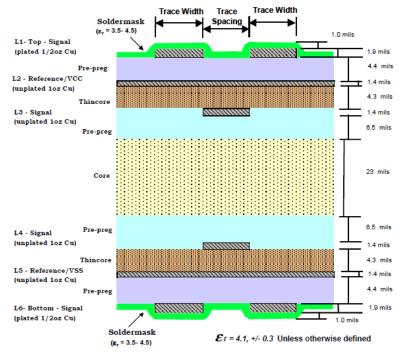


Figure 6-7 6-Layer PCB Stack-up Example

• Ground referencing is highly recommended. If unavoidable, stitching capacitors of 0.1uF should be placed when reference plane is changed.

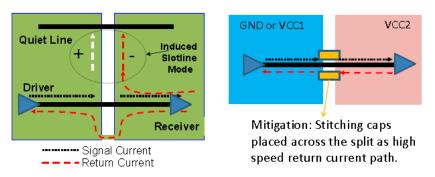


Figure 6-8 Stitching Capacitor Placement

- To keep the reference unchanged, stitching vias must be used when changing layers.
- Differential pair should maintain symmetrical routing whenever possible. The intra-pair skew of micro-strip should be less than 5 mils.
- To keep the reference unchanged, stitching vias must be used when changing layers.
- Differential pair should maintain symmetrical routing whenever possible. The intra-pair skew of micro-strip should be less than 5 mils.

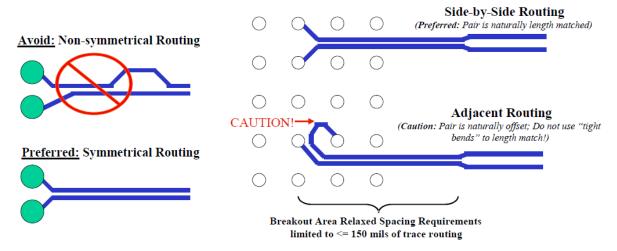


Figure 6-9 Layout Guidance of Matched Differential Pair

- For minimal crosstalk, inter-pair spacing between two differential micro-strip pairs should be at least 20 mils or 4 times the dielectric thickness of the PCB.
- Wider trace width of each differential pair is recommended in order to minimize the loss, especially for long routing. More consistent PCB impedance can be achieved by a PCB vendor if trace is wider.
- Differential signals should be routed away from noise sources and other switching signals on the printed circuit board.
- To minimize signal loss and jitter, tight bend is not recommended. All angles α should be at least 135 degrees. The inner air gap A should be at least 4 times the dielectric thickness of the PCB.

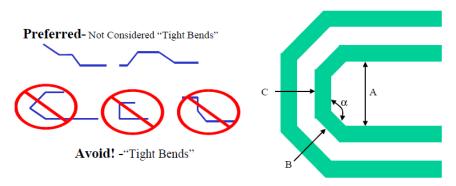


Figure 6-10 Layout Guidance of Bends

• Stub creation should be avoided when placing shunt components on a differential pair.

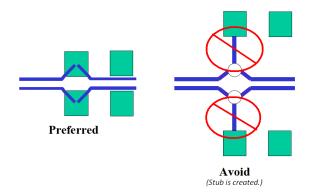


Figure 6-11 Layout Guidance of Shunt Component

Placement of series components on a differential pair should be symmetrical.

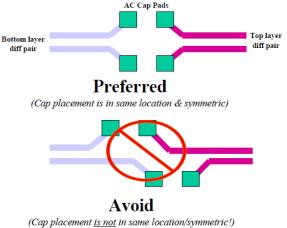


Figure 6-12 Layout Guidance of Series Component

• Stitching vias or test points must be used sparingly and placed symmetrically on a differential pair.

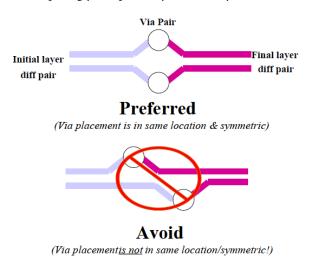


Figure 6-13 Layout Guidance of Stitching Via

7. Mechanical/Packaging Information

7.1 Mechanical Outline

19-042

Figure 7-1 PI2DPX1066 (32-pin) Package Mechanical Dimension

7.2 Part Marking Information

Our standard product mark follows our standard part number ordering information, except for those products with a speed letter code. The speed letter code mark is placed after the package code letter, rather than after the device number as it is ordered. After electrical test screening and speed binning has been completed, we then perform an "add mark" operation which places the speed code letter at the end of the complete part number.

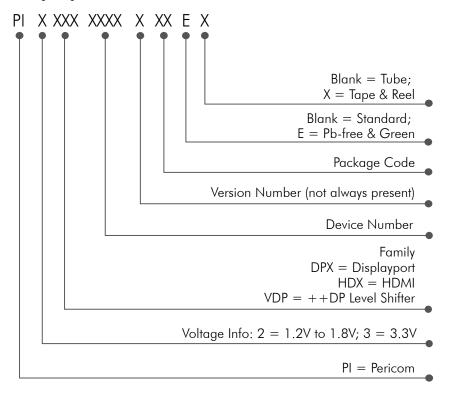


Figure 7-2 Part Naming Information

PI2DPX

Figure 7-3 Part Marking Information

Bar above Fab Code means Cu wire

7.3 Tape & Reel Materials and Design

Carrier Tape

The Pocketed Carrier Tape is made of Conductive Polystyrene plus Carbon material (or equivalent). The surface resistivity is 10⁶Ohm/sq. maximum. Pocket tapes are designed so that the component remains in position for automatic handling after cover tape is removed. Each pocket has a hole in the center for automated sensing if the pocket is occupied or not, thus facilitating device removal. Sprocket holes along the edge of the center tape enable direct feeding into automated board assembly equipment. See Figures 7-3 and 7-4 for carrier tape dimensions.

Cover Tape

Cover tape is made of Anti-static Transparent Polyester film. The surface resistivity is 10⁷Ohm/Sq. Minimum to 10¹¹Ohm sq. maximum. The cover tape is heat-sealed to the edges of the carrier tape to encase the devices in the pockets. The force to peel back the cover tape from the carrier tape shall be a MEAN value of 20 to 80gm (2N to 0.8N).

Reel

The device loading orientation is in compliance with EIA-481, current version (Figure 7-2). The loaded carrier tape is wound onto either a 13-inch reel, (Figure 7-4) or 7-inch reel. The reel is made of Antistatic High-Impact Polystyrene. The surface resistivity 10⁷Ohm/sq. minimum to 10¹¹Ohm/sq. max.

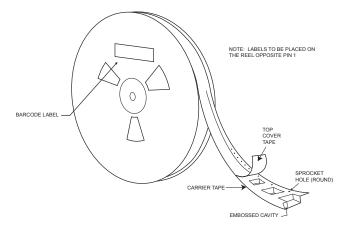


Figure 7-4 Tape & Reel Label Information

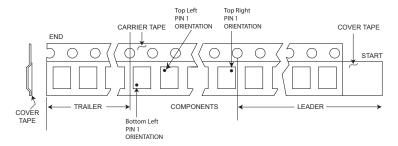


Figure 7-5 Tape Leader and Trailer Pin 1 Orientations

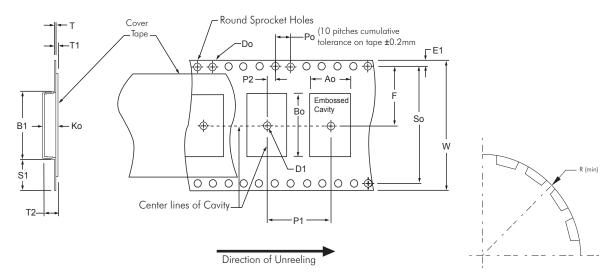


Figure 7-6 Standard Embossed Carrier Tape Dimensions

Table 7-1. Constant Dimensions

Tape Size	D ₀	D ₁ (Min)	E ₁	P ₀	$\mathbf{P}_{_{2}}$	R (See Note 2)	S ₁ (Min)	T (Max)	T ₁ (Max)
8mm		1.0			20 1005	25			
12mm					2.0 ± 0.05		0.6		
16mm	1.5 <u>+0.1</u>	1.5	1.75 ± 0.1	4.0 ± 0.1		30	0.6	0.6	0.1
24mm	<u>-0.0</u>		1./3 ± 0.1	4.0 ± 0.1	2.0 ± 0.1			0.6	0.1
32mm		2.0				50	N/A		
44mm		2.0			2.0 ± 0.15	30	(See Note 3)		

Table 7-2. Variable Dimensions

Tape Size	P ₁	B ₁ (Max)	E ₂ (Min)	F	So	T ₂ (Max.)	W (Max)	A ₀ , B ₀ , & K ₀	
8mm	Specific per package type. Refer to FR-0221 (Tape and Reel Packing Information)		4.35	6.25	3.5 ± 0.05		2.5	8.3	
12mm		8.2	10.25	5.5 ± 0.05	N/A (see note 4)	6.5	12.3		
16mm		12.1	14.25	7.5 ± 0.1		8.0	16.3	See Note 1	
24mm		20.1	22.25	11.5 ± 0.1		12.0	24.3		
32mm		23.0	N/A	14.2 ± 0.1	28.4± 0.1	12.0	32.3		
44mm		35.0	N/A	20.2 ± 0.15	40.4 ± 0.1	16.0	44.3		

Notes:

- 1. A0, B0, and K0 are determined by component size. The cavity must restrict lateral movement of component to 0.5mm maximum for 8mm and 12mm wide tape and to 1.0mm maximum for 16,24,32, and 44mm wide carrier. The maximum component rotation within the cavity must be limited to 200 maximum for 8 and 12 mm carrier tapes and 100 maximum for 16 through 44mm.
- 2. Tape and components will pass around reel with radius "R" without damage.
- 3. S1 does not apply to carrier width ≥32mm because carrier has sprocket holes on both sides of carrier where Do≥S1.
- 4. So does not exist for carrier ≤32mm because carrier does not have sprocket hole on both side of carrier.

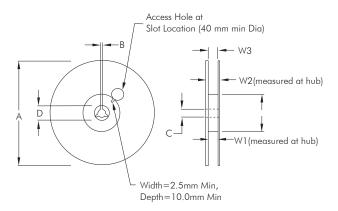


Figure 7-7 Reel Dimensions

Table 7-3. Reel Dimensions by Tape Size

Tape Size	A	N (Min) See Note A	W ₁	W ₂ (Max)	$W_{_3}$	B (Min)	С	D (Min)
8mm	178	60 ±2.0mm or	8.4 +1.5/-0.0 mm	14.4 mm		1.5mm	13.0 +0.5/-0.2 mm	1
12mm	±2.0mm or 330±2.0mm	100±2.0mm	12.4 +2.0/-0.0 mm	18.4 mm	Shall Accommodate Tape Width Without Interference			
16mm			16.4 +2.0/-0.0 mm	22.4 mm				20.2mm
24mm	220 12 0	100 12 0	24.4 +2.0/-0.0 mm	30.4 mm				
32mm	330 ±2.0mm	100 ±2.0mm	32.4 +2.0/-0.0 mm	38.4 mm				
44mm			44.4 +2.0/-0.0 mm	50.4 mm				

Note:

^{1.} A. If reel diameter $A=178\pm2.0$ mm, then the corresponding hub diameter (N(min) will by 60 ± 2.0 mm. If reel diameter $A=330\pm2.0$ mm, then the corresponding hub diameter (N(min)) will by 100 ± 2.0 mm.

8. Important Notice

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-no-tice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2025 Diodes Incorporated. All Rights Reserved.

www.diodes.com