The DLD101 is a 1A rated linear mode constant current driver specifically designed for driving LEDs for illumination and indication applications. It has been configured using optimized discretes in a thermally efficient DFN package. It can also be used for low cost applications that require DC current regulation.

Description

The DLD101 linear constant current driver is rated up to 1A and the LED current is programmed with one external resistor, offering a low cost, space saving LED drive solution.

- **DFN, flat, no lead package**
 Saves board space, allowing for higher integration of PC board

- **DFN package - highly thermally efficient**
 Provides higher power dissipation than relatively comparable SOT-23 form factor

- **1A current capability**
 High drain current MOSFET element for increased light intensity output of the LEDs and lower bias current than provided by BJT pass elements

- **Uses unique PBT or double base connection BJT to incorporate bias resistors into package**
 Integrates resistors and provides added circuit flexibility. E.g. can attach external capacitor across base resistor

- **Current set with one external resistor**
 Lower part count and lower total cost compared to other devices

Applications

- Flashlights
- Emergency lights
- Garden lights
- LED lights
- Signage
- Back lighting applications

www.diodes.com
DLD101 - 1A rated linear mode constant current LED driver

Typical application circuit

The DLD101 has been designed primarily for solid state lighting applications, to be used as a current sink circuit solution for LEDs. It features a N-channel MOSFET capable of 1A drive current and a prebiased NPN transistor (which allows direct connection to the base, or via a series base resistor).

Figure (left) shows a typical application circuit diagram for driving an LED or string of LEDs. Note that the pre-biased transistor (Q2) has the option of bypassing the series base resistor by connecting directly to pin 7. The N-MOSFET (Q1) is configured as a VBE referenced current sink and is biased on by R_C. The current passed through the LED string, MOSFET and source resistor, develops a voltage across R_S that provides a bias to the NPN transistor. Consideration of the expected linear mode power dissipation must be factored into the design, with respect to the DLD101’s thermal resistance.

$$V_{DS} = V_{CC} - V_F \text{ LED String} - V_R$$

$$P_{Q1} = V_{DS} \cdot I_{\text{LED String}}$$

PWM dimming functionality can be effected by either driving the NPN base via an additional resistor (thereby overriding the feedback from R_S) or by pulling the gate of the MOSFET down by direct connection.

The PWM control pulse stream can be provided by a microcontroller or simple 555 based circuitry.

Product Overview

| Part Number | Product Type | Max power dissipation | Drain source voltage V_{DSS} | Gate source voltage V_{GSS} | Drain current I_D Max | Static drain source on resistance R_{DSON} Max @ $V_{GS} = 1/2 I_D$ | Gate threshold voltage $V_{GS(th)}$ Min @ $I_D = 250\mu A$ | Input capacitance C_{ISS} Typ
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DLD101</td>
<td>Linear mode current sink LED driver</td>
<td>700mW</td>
<td>100V</td>
<td>±20V</td>
<td>1A</td>
<td>0.85Ω @ 10V/1.5A, 0.99Ω @ 6V/1A</td>
<td>2V</td>
<td>129pF</td>
</tr>
</tbody>
</table>

To find out more information:
