The DGD2003/2005 and DGD2012 are 200V gate driver ICs designed for driving two external N-channel MOSFETs in a half-bridge configuration.

Featuring both high-side and low-side output drive capability, with simple logic level input, enables an easy interface between the MCU and the power MOSFET switches. Supporting up to 200V via a floating high-side suits a wide range of motor driving in battery-operated applications.

These gate drivers encompass self-protection features such as dead-time and matched delays to evade shoot-through issues, Schmitt triggered inputs to avoid false triggering, gate drive tolerance to negative transients caused during high dV/dt switching, and undervoltage lockout (UVLO) protection on the V_{CC} and V_{BS} supply to avoid malfunction under low supply voltage.

The Diodes Advantage

The DGD2003, DGD2005 and DGD2012 are 200V gate drivers capable of driving N-channel MOSFETs in half-bridge configuration.

- **Source & Sink Currents (0.29A, 0.6A DGD2003/5; 1.9A, 2.3A DGDG2012)**
 - Increasing system efficiencies by minimizing switching time of power MOSFETs

- **Logic Level Input > 2.5V**
 - PWM control directly from 3.3V MCU while the output steps up to the Vcc supply (8 to 14V) to ensure the MOSFET is fully enhanced to reduce losses

- **Shoot-Through Prevention Logic**
 - To protect the MOSFET from shoot-through, these gate drivers have matched delays.

- **SO-8 Footprint**
 - Standard package and pinout for ease of use

Applications

- **Motor Drive**
 - Brushless DC (BLDC) motor driving up to 200V, especially in battery operated applications:
 - Cordless power tools, garden tools and domestic appliances.
 - Light Electric Vehicles (LEVs)
 - Robotics
 - Drones

- **Power Conversion**
 - Inverter Drives
Product Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Integrated Boot Strap Diode</th>
<th>Vcc Min / Max (V)</th>
<th>Offset Voltage Max (V)</th>
<th>Inputs</th>
<th>Output Current Io+ Typ (A)</th>
<th>Output Current Io- Typ (A)</th>
<th>Internal Deadtime Typ (ns)</th>
<th>ton / toff Typ (ns)</th>
<th>tr / tf Typ (ns)</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-Bridge Gate Drivers</td>
<td></td>
</tr>
<tr>
<td>DGD2003S8-13</td>
<td>N</td>
<td>10 / 20</td>
<td>200</td>
<td>HIN, LIN*</td>
<td>0.29</td>
<td>0.6</td>
<td>420</td>
<td>680 / 150</td>
<td>70 / 35</td>
<td>SO-8</td>
</tr>
<tr>
<td>High-Side / Low-Side Gate Drivers</td>
<td></td>
</tr>
<tr>
<td>DGD2005S8-13</td>
<td>N</td>
<td>10 / 20</td>
<td>200</td>
<td>HIN, LIN</td>
<td>0.29</td>
<td>0.6</td>
<td>-</td>
<td>220 / 200</td>
<td>-</td>
<td>SO-8</td>
</tr>
<tr>
<td>DGD2012S8-13</td>
<td>N</td>
<td>10 / 20</td>
<td>200</td>
<td>HIN, LIN</td>
<td>1.9</td>
<td>2.3</td>
<td>-</td>
<td>180 / 220</td>
<td>40 / 20</td>
<td>SO-8</td>
</tr>
</tbody>
</table>

* = Out of phase

Pin Assignments

Typical Configuration