

HDMI Test Report

Overall Result: PASS

Device Description Device ID Transmitter Fixture Type Other Probe Connection 4 Probes Probe Head Type N5444A Lane Connection 1 Data Lane HDMI Specification 2.0 HDMI Test Type TMDS Physical Layer Tests Test Session Details Infinitium SW Version 05.60.00603 Infinitium Model Number DSOX92504A Infinitium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew	Test Configuration Details							
Device ID Transmitter Fixture Type Other Probe Connection 4 Probes Probe Head Type N5444A Lane Connection 1 Data Lane HDMI Specification 2.0 HDMI Test Type TMDS Physical Layer Tests Test Session Details Infinitium SW Version 05.60.00603 Infinitium Serial Number DSOX92504A Infinitium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew	Device Description							
Fixture Type Other Probe Connection 4 Probes Probe Head Type N5444A Lane Connection 1 Data Lane HDMI Specification 2.0 HDMI Test Type TMDS Physical Layer Tests Test Session Details Infiniium SW Version 05.60.00603 Infiniium Model Number DSOX92504A Infiniium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew	evice ID T	Fransmitter						
Probe Connection 4 Probes Probe Head Type N5444A Lane Connection 1 Data Lane HDMI Specification 2.0 HDMI Test Type TMDS Physical Layer Tests Test Session Details Infiniium SW Version 05.60.00603 Infiniium Model Number DSOX92504A Infiniium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew	xture Type	Other						
Probe Head TypeN5444ALane Connection1 Data LaneHDMI Specification2.0HDMI Test TypeTMDS Physical Layer TestsTest Session DetailsInfiniium SW Version05.60.00603Infiniium Model NumberDSOX92504AInfiniium Serial NumberMY54410104Application SW Version2.11Debug Mode UsedNoProbe (Channel 1)Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal SkewProbe (Channel 2)Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew <th>obe Connection 4</th> <th>4 Probes</th>	obe Connection 4	4 Probes						
Lane Connection1 Data LaneHDMI Specification2.0HDMI Test TypeTMDS Physical Layer TestsTest Session DetailsInfiniium SW Version05.60.00603Infiniium Model NumberDSOX92504AInfiniium Serial NumberMY54410104Application SW Version2.11Debug Mode UsedNoProbe (Channel 1)Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal SkewProbe (Channel 2)Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Lalibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Librated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Librated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Librated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Librated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Librated (9 AUG 2016 14:16:00), Using Cal Skew	obe Head Type	N5444A						
HDMI Specification 2.0 HDMI Test Type TMDS Physical Layer Tests Test Session Details Infiniium SW Version 05.60.00603 Infiniium Model Number DSOX92504A Infiniium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Librated (9 AUG 2016 14:16:00), Using Cal Skew	ne Connection 1	1 Data Lane						
HDMI Test Type TMDS Physical Layer Tests Test Session Details Infiniium SW Version 05.60.00603 Infiniium Model Number DSOX92504A Infiniium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew	DMI Specification 2	2.0						
Test Session Details Infiniium SW Version 05.60.00603 Infiniium Model Number DSOX92504A Infiniium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew	DMI Test Type	TMDS Physical Layer Tests						
Infiniium SW Version 05.60.00603 Infiniium Model Number DSOX92504A Infiniium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Model: N2801A Serial: US54094067 Model: N2801A Serial: US54094067 Probe (Channel 1) Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew		Test Session Details						
Infiniium Model Number DSOX92504A Infiniium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew Model: N2801A Serial: US54094059	finiium SW Version)5.60.00603						
Infinitium Serial Number MY54410104 Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew Model: N2801A Serial: US54094059 Model: N2801A Serial: US54094059	finiium Model Number	JSOX92504A						
Application SW Version 2.11 Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew Model: N2801A Serial: US54094059 Model: N2801A	finiium Serial Number	MY54410104						
Debug Mode Used No Probe (Channel 1) Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew Model: N2801A Serial: US54094059 Model: N2801A Serial: US54094059	plication SW Version 2	2.11						
Model: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Atten (5.6226E Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew Model: N2801A Serial: US54094059	ebug Mode Used	No						
Probe (Channel 2) Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew Model: N2801A Serial: US54094059	א obe (Channel 1) א S	Vodel: N2801A Serial: US54094067 Head: N5444A Atten: Calibrated (9 AUG 2016 14:10:30), Using Cal Atten (5.6226E+000) Skew: Calibrated (9 AUG 2016 14:11:12), Using Cal Skew						
Model: N2801A Serial: US54094059	obe (Channel 2)	Model: N2801A Serial: US54094054 Head: N5444A Atten: Calibrated (9 AUG 2016 14:15:19), Using Cal Atten (5.4285E+000) Skew: Calibrated (9 AUG 2016 14:16:00), Using Cal Skew						
Probe (Channel 3) Head: N5444A Atten: Calibrated (9 AUG 2016 14:19:22), Using Cal Atten (5.6325E Skew: Calibrated (9 AUG 2016 14:20:11), Using Cal Skew	obe (Channel 3)	Vodel: N2801A Serial: US54094059 Head: N5444A Atten: Calibrated (9 AUG 2016 14:19:22), Using Cal Atten (5.6325E+000) Skew: Calibrated (9 AUG 2016 14:20:11), Using Cal Skew						
Model: N2801A Serial: US54094057 Head: N5444A Atten: Calibrated (9 AUG 2016 15:17:37), Using Cal Atten (5.5290E Skew: Calibrated (9 AUG 2016 15:18:23), Using Cal Skew Last Test Date 2016-08-26 11:39:50 UTC +08:00	obe (Channel 4)	Model: N2801A Serial: US54094057 Head: N5444A Atten: Calibrated (9 AUG 2016 15:17:37), Using Cal Atten (5.5290E+000) Skew: Calibrated (9 AUG 2016 15:18:23), Using Cal Skew 2016-08-26 11:39:50 UTC +08:00						

Summary of Results

Test Statistics					
Failed	0				
Passed	19				
Total	19				

Margin Thresholds							
Warning	< 2 %						
Critical	< 0 %						

Pass	# Failed	# Trials	Test Name	Actual Value	Margin	Pass Limits
1	0	1	7-9: Clock Jitter	119 mTbit	52.4 %	VALUE <= 250 mTbit
1	0	1	7-4: Clock Rise Time	122.677 ps	63.6 %	VALUE >= 75.000 ps
V	0	1	7-4: Clock Fall Time	126.466 ps	68.6 %	VALUE >= 75.000 ps
\checkmark	0	1	7-8: Clock Duty Cycle(Minimum)	50.080	25.2 %	>=40%
1	0	1	7-8: Clock Duty Cycle(Maximum)	50.740	15.4 %	<=60%
1	0	1	<u>7-10: D0 Mask Test</u>	0.000	50.0 %	No Mask Failures
\checkmark	0	1	<u>7-10: D0 Data Jitter</u>	150 m	50.0 %	<=0.3Tbit
\checkmark	0	1	7-4: D0 Rise Time	117.192 ps	56.3 %	VALUE >= 75.000 ps
1	0	1	<u>7-4: D0 Fall Time</u>	115.835 ps	54.4 %	VALUE >= 75.000 ps
1	0	1	<u>7-2: VL Clock +</u>	2.739 V	46.3 %	LowerLimit V <= VALUE <= 2.900 V
V	0	1	<u>7-2: VL Clock -</u>	2.728 V	42.7 %	LowerLimit V <= VALUE <= 2.900 V
1	0	1	7-7: Intra-Pair Skew - Clock	23 mTbit	42.3 %	-150 mTbit <= VALUE <= 150 mTbit
1	0	1	<u>7-2: VL D0+</u>	2.763 V	45.7 %	LowerLimit V <= VALUE <= 2.900 V
1	0	1	<u>7-2: VL D0-</u>	2.751 V	49.7 %	LowerLimit V <= VALUE <= 2.900 V
\checkmark	0	1	7-7: Intra-Pair Skew - Data Lane 0	29 mTbit	40.3 %	-150 mTbit <= VALUE <= 150 mTbit
1	0	1	<u>7-3: Voff Clock +</u>	-4 mV	30.0 %	-10 mV <= VALUE <= 10 mV
V	0	1	7-3: Voff Clock -	-5 mV	25.0 %	-10 mV <= VALUE <= 10 mV
1	0	1	7-3: Voff D0+	-5 mV	25.0 %	-10 mV <= VALUE <= 10 mV
1	0	1	<u>7-3: Voff D0-</u>	-5 mV	25.0 %	-10 mV <= VALUE <= 10 mV

Report Detail

7-9: Clock Jitter Reference: Test IL	0 7-9
est Summary: Pess Test Description: 2 Channels Connection Model: TMDS differential clock jitter must not exceed 0.25*Tbit, relative to the ide	al
covery Clock. For compliance, the DUT should output 27MHz(or 25MHz), 74.25MHz, 148.5MHz, and 222.75MHz for testing.	
ass Limits: <= 250 mTbit Clock Jitter 119 mTbit	
esult Details	
DMIAutomationConfig Timing 100 Test Frequency(MHz) 297.129 Tbit(ps) 336.555 Clock Jitter(ps) 39.980	
Samples 16.00000000 M # Edges 118.426000 k Acquisition Bandwidth (GHz) 13.000	
ial 1	

file:///D:/aaa/ada/2016/HDMI/3HDX1204B1/3HDX1204B1_HDMI1.4_2.2dBEQ_0dB... 27/8/2016

7-4: Clock Fall Time				Refere	nce: Test ID 7-4
Test Summany: Pass Test Description: 20	Channels Connection Model: Th	e transition time is	defined as the time inte	rval between the	e normalized 20%
nd 80% amplitude levels. For compliance, the DLD	E should output the highest sup	orted nivel clock fr	equency during the test		
Pass Limits: >= 75,000 ps Raw Clock T	ransition Time 126 466 p		equency during the test		
Posult Dotails		.			
HDMIAutomationConfig Timing 100	Test Frequency(MHz)	297.129 Upp	er Threshold(%)	80.000	
Lower Threshold(%) 20 000 # Edge	s 118 799000 k Acquis	ition Bandwid	th (GHz) 13 000		
Trial 1: Raw Clock Transition Time					
Keysight Infiniium : Friday, August 20	6, 2016 10:49:44 AM				
TA					767 mV
					577 mV
					387 mV
					197 mV
	+				
					7 mV
					-183 mV -373 mV
					-563 mV
	2 ¹¹				
		The second secon			-753 mV
-14.7 ns -14.5 ns -14.3 ns -14.2 ns	-14.0 ns -13.8 ns	-13.7 ns	-13.5 ns -13.3 ns	-13.2 ns	-13.0 ns 1-3
Scales -	Horiz Scale Positio	n Vertica <u>l S</u> c	ale Offset		
Channel Channel	1 168.0 ps/div -13.83	ns 190.0 mV/di	v 7.000 mV		
	`				
7-8: Clock Duty Cycle(Minir	num)			Refere	nce: Test ID 7-
Test Summary: Pass Test Description: 20	Channels Connection Model: Cl	ock duty cycle mus	t be at least 40% and no	ot more than 60°	%.The Source
nall meet the AC specifications in Table 4-13 acros	ss all operating conditions speci	fied in Table 4-11.	For compliance, the DU	T should output	the highest
pported pixel clock frequency during the test.					
Pass Limits: >=40% Clock Duty Cycle	Minimum 50.080				

HDMIAutomationConfigTiming 100Test Frequency(MHz)297.129# Edges118.426000 kTdutyMIN(ns)1.685Trial 1

Result Details

-373 mV

563 mV

-753 mV

1-3

2.83 ns

HDMIAutomationConfig Timing 100

√7-4: D0 Fall Tir	me							Reference: T	est ID 7-4
Test Summary: Pass	Test Descri	ption: Th	e transition time	is defined as th	e time interva	al between the no	ormalized 20%	and 80% amplitude	levels. For
compliance, the DUT should o	output the h	nighest supp	orted pixel clock	frequency dur	ing the test.				
Pass Limits: >= 75.000	ps Tra	nsition Ti	me 115.835 p	s					
Result Details									
HDMIAutomationCo	nfig Tim	ing 100	Test Freque	ncy(MHz)	297.129	Data Lane A	D0 Uppe	r Threshold(%)	80.000
Lower Threshold(%)	20.000	#Edge	142.600000 k	Acquisiti	ion Bandw	vidth (GHz)	13.000		
Trial 1				-		_			
Trial 1: Transition Time									
Keysight Infiniium :	Friday,	August 26	5, 2016 10:54	:29 AM					726 mV
									720 111
									534 mV
									a second second
									342 mV
									150 mV
									100 1110
									-42 mV
									-234 mV -426 mV
									-618 mV
-2.71 ns -2.68 ns	-2.64 ns	-2.61 ns	-2.57 ns	-2.54 ns	-2.51 ns	-2.47 ns	-2.44 ns	-2.40 ns -2.3	7 ns 2-4
Top Previous Next		Scales Channel 2	Horiz Sca 2 34.00 ps	ale Position /div -2,540 n	Vertica s 192.0 m	l Scale Offse V/div -41.9	 t 0 mV		
√7-2: VL Clock ·	+							Reference: T	est ID 7-2
Test Summary: Pass	Test Descri	ption: The	e Source shall m	eet the DC spe	cifications in	Table 4-12 for all	operating cor	ditions specified in T	able 4-11
when driving clock and data s	ignals. For	compliance	e, the DUT should	d output the lov	vest supporte	d pixel clock freq	uency during t	he test.	
Pass Limits: [LowerLin	nit V to 2.9	900 V] V	L 2.739 V						
Result Details							_		
HDMIAutomationCo	nfig Tim	ing 100	Test Freque	ncy 297.12	9 MHz # I	Edges 37.12	1000 k VH	I 3.274 V	
VL (See image) DUT	suppor	ts clock	rates > 165	MHz true	PassLimit	t Min (Lower	r Limit) 2.6	00 V	

file:///D:/aaa/ada/2016/HDMI/3HDX1204B1/3HDX1204B1_HDMI1.4_2.2dBEQ_0dB... 27/8/2016

file:///D:/aaa/ada/2016/HDMI/3HDX1204B1/3HDX1204B1_HDMI1.4_2.2dBEQ_0dB... 27/8/2016

file:///D:/aaa/ada/2016/HDMI/3HDX1204B1/3HDX1204B1 HDMI1.4 2.2dBEQ 0dB... 27/8/2016

Test Summary: Pass	Test Description:	Confirm that	a disabled T	MDS link on	y allows lea	akage currents v	within specifie	d limits.	
Pass Limits: [-10 mV	to 10 mV] Voff	-5 mV							
Result Details									
HDMIAutomationC	onfig Timing 10	00							
Trial 1									
Trial 1: Voff									
Keysight Infiniium	: Friday, Augus	t 26, 2016	11:39:16	MA					
									12 mV
									4 mV
		Marali	Stalla.	a ann a'		A. N.			n i Maa -3 mV
									and all my
		High					koloni		
									19 mv
									-26 mV
									-34 mV
									-42 mV
-500 ns -400 ns	-300 ns -20	0 ns -10	0 ns	0.0 s	100 ns	200 ns	300 ns	400 ns	500 ns 3
	SCAL	Hoi	iz Scale	Position	Vertical	Scale Offset	 ; 		
Ton Previous Next	(Guen)	nel 3 100	1. J 118/ GLV	0.0008	7.700 my	/01V -11.00) IIIA		
7_3: Voff D0+									
								Referenc	e: Test ID 7-3
Test Summary: Pass	Test Description:	Confirm that	a disabled T	MDS link on	y allows lea	akage currents v	vithin specifie	d limits.	
Pass Limits: [-10 mV	to 10 mV] Voff	-5 mV							
Result Details									
HDMIAutomationC	onfig Timing 10	00							

Top Previous