

ZXCT1041EV1 EVALUATION BOARD USER GUIDE

DESCRIPTION

The ZXCT1041EV1 is intended for the evaluation of the ZXCT1041 device. The ZXCT1041 is a high side bidirectional current monitor providing a fixed voltage gain of 10.

The device produces a voltage output proportional to the current sampled by a small inline sensing resistor, R_{sense} . The voltage output is scaled by the choice of R_{sense} . As delivered the board is set up to provide an out put of 1.5V from a current of 1.5A using a 100 m Ω sampling resistor.

There is a second 25 m Ω resistor that can be selected by means of a solder link and provides an output of 1.5V for a load current of 6A.

Additionally provision is made for a wire ended sampling resistor of the users choice. An open collector flag output indicates the direction of current flow.

The printed circuit board is common to other devices in the ZXCT family, for the ZXCT1041, the Vcc pin is not used.

FEATURES

- Supply Range 4.2 to 20V for 1.5V output.
- Selectable current measurement range
- 5 Pin SOT23-5 package

APPLICATIONS

- Battery Charging
- Power Supplies
- Over Current Monitoring

.

ORDERING INFORMATION

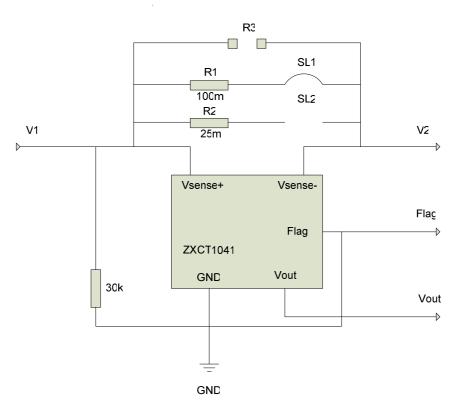
ORDER NUMBER	
ZXCT1041EV1	

Please note evaluation boards are subject to availability and qualified leads.

PAD NAMES AND DEFINITIONS

NAME	DESCRIPTION	
V1	Supply Voltage Or	
	Connection to Load/Battery	
V2	Supply Voltage	
	Or	
	Connection to Load/Battery	
VOUT	Output Voltage	
FLAG	Flag Output	
-	Indicates direction of current flow	
GND	0V / Ground	
SL1,SL2	Solder Links	
Vcc	Not used	

Figure 1: ZXLD1350EV2 evaluation board


The ZXCT1041EV1 is configured as shown in figure 1; SL1 is shorted to output 1.5V for a 1.5A current flow. The target applications are battery chargers, power supply units and other applications where bi-directional current measurement is a requirement.

The input voltage range for the ZXCT1041EV1 is 20V down to a minimum of (2.7V +Vout). Eg if the required full scale output voltage is 1.5 V the input range is 4.2V to 20V.

Note that the Flag output requires a pull-up resistor.

Figure 1 Schematic Diagram of ZXCT1041EV1

Sense resistor

The board has been designed with two selectable values of sense resistor. The value of the sense resistor can be chosen by using the solder links SL1 and SL2.

The board is also tracked for a user defined through hole resistor (R3).

The 100m Ω resistor (R1) is selected by shorting SL1 and opening SL2. This results in an output of 1.5V for a load current of 1.5A (assuming that R3 is not fitted).

The $25m\Omega$ resistor (R2) is selected by shorting SL2 and opening SL1, resulting in an output of 1.5A for a load current of 6A (assuming that R3 is not fitted).

If both links are shorted the effective resistance is $20m\Omega$ giving an output of 1.5V for a current of 7.5A (assuming that R3 is not fitted).

If both links are open only the optional leaded resistor R3 (if fitted) is in circuit.

The maximum power dissipation rating of the resistor must be appropriate to the load current level.

N.B. The board is set by default with SL1 shorted and SL2 open, using the $100m\Omega$ resistor.

For further information on choosing a value of sense resistor please refer to the ZXCT1041 datasheet .

Vout

If the preset selectable values of sense resistor are chosen, the device will output 1.5V for a 1.5A load current and 1.25V for a 5.0A load current. The output is directly proportional to the differential voltage across the sense pins of the device. The ZXCT1041 will output the same voltage for current flow in either direction, but the level of the Flag output will change.

Configuration table for ZXCT1041EV1

LOAD CURRENT (A)	R _{sense} (mΩ)	VOUT (V)	SOLDER LINK CONFIGURATION
1.5	100	1.5	Short SL1
6.0	25	1.5	Short SL2
7.5	20	1.5	Short SL1 & SL2

<u>FLAG</u>

The direction of current flow can be determined from the flag output pin. The flag output of the device is an open collector output. On board the ZXCT1041EV1 is a $30k\Omega$ resistor which is connected to V1, it may be connected to a lower voltage eg 3V3 if that is appropriate in the application.

If current is flowing from V1 to V2, the FLAG pin will be High, at the same potential as V1 or the supply connected to the collector resistor on the Flag output.

If current is flowing in the reverse direction, i.e. from V2 to V1, the FLAG pin will be Low, typically 60mV.

Configuration for different LOAD currents.

The board can be configured for different load currents by changing the smd resistors or fitting a suitable wire ended resistor and opening both solder links. It is important to ensure an appropriate value of R_{sense} is selected to obtain the desired accuracy for a given output current.

The value of Vout is 10 times the voltage dropped across the sensing resistor, (providing that the input Voltage is more than 2.7V higher than the Vout.)

Choosing a larger value for R_{sense} gives a higher output voltage for a given current resulting in better resolution but at the expense of increased voltage drop and higher dissipation in R_{sense} . It also reduces the minimum voltage at which the device will be linear as Vout +2.7V is the minimum input voltage for accurate results.

The ZXCT1041 is optimized for values of V_{sense} of either polarity between 0 and 800mV.

Example: Scaling for 1.5A load current and a 500mV output.

The ZXCT1041 has a fixed gain of 10. V_{out} = 10 x V_{sense} To obtain a 500mV output, 50mV is required between V_{sense+} and V_{sense-}. The value for R_{sense} is thus 50mV /1.5A = $33m\Omega$.

Accuracy

The ZXCT1041 current monitor IC is a $2\%^2$ accurate device. The accuracy of the output voltage will be influenced by the tolerance of the external sense used. The ZXCT1041EV1 utilizes 1% accurate sense resistors.

² Total error at +100mV sense voltage

COMPONENTS LIST

Ref	Value	Package	Part Number	Manufacturer	Notes
R1	100mΩ	1206	LR1206-R10FI	Welwyn	SMD Sense Resistor 1%
R2	25mΩ	2512	LRF2512-R025FW	Welwyn	SMD Sense Resistor 1%
R3	30kΩ	0805		Generic	SMD 1% 0.125W
ZXCT		SOT235	ZXCT1041E5	ZETEX	

SET-UP AND TEST

The board is preset to give an output |Voltage of 1.5V for a load current of 1.5A (SL1 is shorted to connect in the $100m\Omega$ (R1) sense resistor). To change the board to give an output Voltage of 1.5V for a current of 6.0A, de-solder SL1 and short SL2. This connects the $25m\Omega$ (R2) sense resistor.

1.0 Ampere load test (forward current flow)

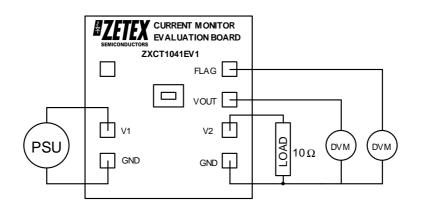
- 1. Ensure SL1 is shorted.
- 2. Connect a linear power supply of +15V between the V1 and GND terminals.
- 3. Set a load current of 1.5A between the V2 and GND terminals using a suitable load.
 - The load must be rated for at least 30W.
- 4. Check with a DVM the supply voltage is +15V between the V1 and GND terminals.
- 5. Measure VOUT with a DVM. The nominal output voltage should read 1.5V.
- 6. Measure the FLAG pin with a DVM, it should be High, approximately V1 15Vin this case.

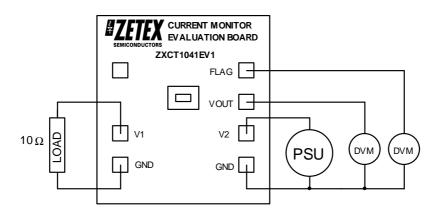
1.0 Ampere load test (reverse current flow)

- 1. Ensure SL1 is shorted.
- 2. Connect a linear power supply of +15V between the V2 and GND terminals.
- 3. Set a load current of 1.5A between the V1 and GND terminals using a suitable load.

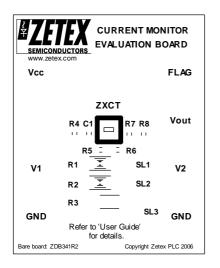
The load must be rated for at least 30W.

- 4. Check with a DVM the supply voltage is +15V between the V2 and GND terminals.
- 5. Measure VOUT with a DVM. The nominal output voltage should read 1.5V.
- 7. Measure the FLAG pin with a DVM, it should be logic Low, less than 200mV

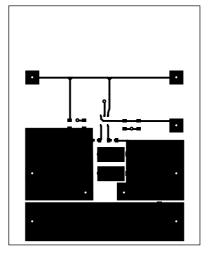

The device may also be evaluated with lower power loads and lower currents by increasing the value of $R_{sense.}$ As the device reacts only to the voltage across this resistor such tests are equally valid.


CONNECTION DIAGRAM

Forward Current flow


CONNECTION DIAGRAM.....continued

Reverse Current flow



EVALUATION BOARD

Top Silk

Top Copper

Definitions

Product change

Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer

The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support

Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:

- A. Life support devices or systems are devices or systems which:
- 1. are intended to implant into the body
- or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions
- for use provided in the labeling can be reasonably expected to result in significant injury to the user
- A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction

The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions

All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office

Quality of product

Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.

To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: **www.zetex.com/salesnetwork**

Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)

Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

Green compliance

Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key: "Preview" "Active" "Last time buy (LTB)" "Not recommended for new des "Obsolete"	Product status recommended Device will be discontinued ar igns" Device is still in production to	Future device intended for production at some point. Samples may be available Product status recommended for new designs Device will be discontinued and last time buy period and delivery is in effect Device is still in production to support existing designs and production Production has been discontinued				
Datasheet status key:						
"Draft version"		y datasheet version and contains	highly provisional			
"Provisional version"	This term denotes a pre-relea	information, which may change in any manner without notice. This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.				
"Issue"		datasheet containing finalized spe	cifications. However, changes to specifications			
Europe	Americas	Asia Pacific	Corporate Headquarters			
Zetex GmbH	Zetex Inc	Zetex (Asia Ltd)	Zetex Semiconductors plc			
Kustermann-park	700 Veterans Memorial Highway	3701-04 Metroplaza Tower 1	Zetex Technology Park, Chadderton			
Balanstraße 59	Hauppauge, NY 11788	Hing Fong Road, Kwai Fong	Oldham, OL9 9LL			
D-81541 München Germany	USA	Hong Kong	United Kingdom			
Telefon: (49) 89 45 49 49 0	Telephone: (1) 631 360 2222	Telephone: (852) 26100 611	Telephone (44) 161 622 4444			
Fax: (49) 89 45 49 49 49	Fax: (1) 631 360 8222	Fax: (852) 24250 494	Fax: (44) 161 622 4446			
europe.sales@zetex.com	usa.sales@zetex.com	asia.sales@zetex.com	hq@zetex.com			

© 2006 Published by Zetex Semiconductors plc.