

PD3.0+PPS/QC4/4+ 27W Class A Charger EV2 Board User Guide Pass USB IF PD3.0+PPS Power Brick Certification Testing

Table of Contents

TABLE OF CONTENTS	.1
CHAPTER 1: SUMMARY	.2
1.1 General Description	. 2
 1.2 key Features 1.2.1 System Key Features	. 2 . 2 . 2
1.3 Applications	. 2
1.4 Main Power Specifications (CV & CC Mode)	. 2
1.5 Evaluation Board Picture	. 2
CHAPTER 2: POWER SUPPLY SPECIFICATION	.3
2.1 Specification and Test Results	. 3
2.2 Compliance	. 3
CHAPTER 3: SCHEMATIC	.4
3.1 EV2 Board Schematic	. 4
3.2 Main board Bill of Material	. 4
 3.3 Schematics Description	. 6 . 6 . 6
CHAPTER 4: EVALUATION BOARD CONNECTIONS	.7
4.1 Quick Start Guide Before Connection	. 7
4.2 System Connection Setup	8

1.2 System Connection Setup	8
4.2.1 Connection with E-Load	8
4.2.2 Cypress Test Kit	8
4.2.3 The sample board Input & Output Wires Connection and	d
QC2.0/3.0 Emulator connection	9

CHAPTER 5: TESTING THE EVALUATION BOARD 10

5.1 Input & Output Characteristics	10
5.1.1 Input Standby Power	10

5.1.2 Input Power Efficiency at Different AC Line Input Voltage
5.1.3 Average Efficiency at Different Loading
5.2 QC4/4+ & PPS Compatible Mode Testing
5.2.2. QC 3.0 Communications mode 200mV/Step Testing
5.2.5 QC4/4+ CC Accuracy 50mA/Step Testing (PPS Support) 13
5.3 Key Performance Waveforms
5.3.5 Dynamic loading performance test from 0A ~ 3A
CHAPTER 6: REVISION CONTROL

6.1 Re	evision table	
6.2 US	SB IF Power Brick Certification Test de	etail

Chapter 1: Summary

1.1 General Description

The 27W QC4/4+ Class A charger Evaluation Board EV2 is composed of three main parts, AP3302A offers the QR PWM switching control & working under the DCM mode with peak current controlling, APR345 is a Synchronous Rectification Controller, and the CYPD3174 is USB PD and Qualcomm[®] Quick Charge™ 4/4+ Controller for implementing quick charger decoder functions. Based on monitoring D+ & D- and CC1 & CC2 signals, CYPD3174 will interprets desired voltage and current setting, and then feedback those information to primary side AP3302A controller for providing well regulated voltage and current as well as related power protections.

1.2 key Features

1.2.1 System Key Features

- SSR Topology Implementation with an Opto-coupler for Accurate Step Voltage Controlling
- QC4+ Offers QC3.0/QC2.0 Backward Compliance
- QC4 supports the USB PD3.0 Function and PPS (3V-11V@20mV)
- Meet DOE6 and CoC Tier 2 Efficiency Requirements
- <75mW No-Load Standby Power

1.2.2 AP3302A Key Features

- Quasi-Resonant Operation with Valley Lock under all Lines
 and Load Conditions
- Switching Frequency: 22kHz-120kHz
- Non-audible-noise QR Controlling
- Soft Start Process during the Start-up Turn-on Moment
- During the burst mode operation and Low start-up operating quiescent currents, 75mW standby power can be achieved
- Built-in Jittering Frequency Function which is the EMI emission can be improved
- Internal Auto Recovery OCP, OVP, OLP, OTP Power Protection, cycle by cycle current limit, also with DC polarity & transformer short and Brown out Protection

1.2.3 APR345 Key Features

- Synchronous Rectification Working at DCM, CCM and QR Flyback
- Eliminate Resonant Ringing Interference
- Fewest External Components used

1.2.4 CYPD3174-24LQXIT Key Features

- with a 32-bit ARM® Cortex[™]-M0 processor
- Supports one USB PD3.0 Type-C port, Support QC4
- Internal Vbus load switch driver
- Internal VBUS_C_MON_DISCHARGE pin
- 3V 24.5V operation voltage without external regulator
- On-chip OVP, OCP, UVP, and SCP
- Supports OTP through integrated ADC circuit
- ESD protection ± 8-kV Contact Discharge
- <u>http://www.cypress.com/ccg3pa</u>

1.3 Applications

• QC4/4+ Wall Chargers

1.4 Main Power Specifications (CV & CC Mode)

Parameter	Value					
Input Voltage	90Vac to 264Vac					
Input standby power	< 75mW					
Main Output	5V/3A, 9V/3A, 12V/2.25A					
Vo / Io	PPS 3V-5.99V 3A					
Day Chan Maltana	Continue Mode 200mV, 3.6V-12V					
Per Step Voltage	PPS 20mV step voltage, 3V-11V					
Efficiency	88.0%					
Total Output Power	27W					
Protections	OCP, OVP, UVP, OLP, OTP					
XYZ Dimension	40 x 40 x 25mm					
ROHS Compliance	Yes					

1.5 Evaluation Board Picture

Figure 1: Top View

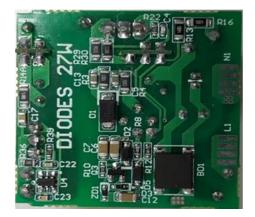
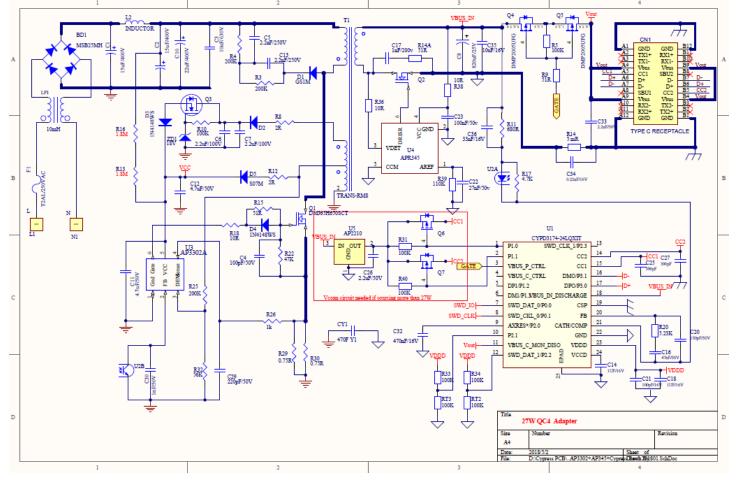


Figure 2: Bottom View

Chapter 2: Power Supply Specification 2.1 Specification and Test Results

Parameter	Test conditions	Min	Nom	Max	Eff / DoE VI	Eff / Tier2	Test Summary
V _{ac} Input Voltage		90 V_{ac}	115/230	$264 \ V_{ac}$			
F _{line} Frequency		47 Hz	50/60	64 Hz			
I _{in} Input Current				0.8 A _{ac}			Pass
No load Pin	At 230Vac_in/50Hz , @ 5V, Pin < 75mW			75mW			Pass , the test result is 58mW
3V/ 3A @115Vac/230Vac Average efficiency	Board end		3V/3A		77.87%	81.34%	Pass, average efficiency is 83.6%
5V/ 3A @115Vac/230Vac Average efficiency	Board end		5V/3A		81.39%	81.84%	Pass, average efficiency is 87%
5V/ 3A @115Vac/230Vac 10% efficiency	Board end		5V/0.3A			72.48%	Pass, efficiency is 78.5%
9V/ 3A @115Vac/230Vac Average efficiency	Board end		9V/3A		86.60%	87.30%	Pass, average efficiency is 89.32%
9V/ 3A @115Vac/230Vac 10% efficiency	Board end		9V/0.3A			76.62%	Pass, efficiency is 80.6%
12V/ 2.25A @115Vac/230Vac Average efficiency	Board end		12V/2.25A		86.20%	87.30%	Pass, average efficiency is 88.89%
12V/ 2.25A @115Vac/230Vac 10% efficiency	Board end		12V/0.225A			74.39%	Pass, efficiency is 81.7%


2.2 Compliance

Parameter	Test conditions	Min	Nom	Мах	Eff / DoE VI	Eff / Tier2	Test Summary
Standby Power	5V Output			75mW			Pass
Output Voltage Tolerance	5V/0-3A	4.75V	5V	5.25V			Pass
Output Voltage Tolerance	9V/0-3A	8.55V	9V	9.45V			Pass
Output Voltage Tolerance	12V/0-2.25A	11.4V	12V	12.6V			Pass
PPS	3V ~ 6V		5A				With E-marked cable detecting To be update
PPS	3V ~ 11V		ЗA				Class A≤ 27W, @11V/2.45A
Output Connector	USB Type C						
Temperature	90Vac , 9V / 3A						Pass
Dimensions W/D/H	40mm x 40mm x 25mm						
Safety	IEC/EN/UL 60950 Standard						
EMI/EMC	FCC/EN55022 Class B						pass

Chapter 3: Schematic

3.1 EV2 Board Schematic

3.2 Main board Bill of Material

Designator Con		Comment	Designator	Comment	Designator	Comment	
C1, C2	x 2 15uF/400V D8X18 BD1		MSB30KH	R3, R4 x 2	200K 1206		
C3		10nF/630V 1206	D1	DFLR1600 SMA	R8, 0805	2.2R 0805 1/8W	
C4		100pF/50V 0603	D2, D5 x 2	S1MWF SOD-123	R12	2.2R 0603	
C5, C13	x 2	2.2nF/250V 0805	D3, D4 x 2	1N4148WS SOD-523	R10	100K 0805	
C6, C7		2.2uF/100V 1206	F1	T2AL/250VAC	R13, R16 x 2	1.8M 1206	
C8		820uF/16V Polymer	L2 inductor	220uH D5 x H11mm 0.9A	R14A	51R 1206	
C9, C12	x 2	4.7uF/50V 1206	LF1 EMI Filter	10mH D13.5xT5.5mm 1A	R15	200ohm 0603	
C10		22uF/400V D10X18	Q1	DMJ65H650SCTI ,TO220	R22	47K 0603	
C17		1nF/200v 0805	Q2	DMTH10H010LCT	R29, R30 x 2	0.75R 1206	
C22		22nF/50v 0603	Q3	DMN24H3D	R36, R38 x 2	10R 0805	
C23		100nF/50v 0603	T1	TRANS-RM8	R39	110K 0603	
CY1		470pF Y1 JN471K	U4	APR345 SOT-6			
			ZD1 SOD-523	18V Zener BZT52C18T			
					•	Small Board Total 4	

PROJE	CT NAME : CCG3PA G	dapter Diodes Board	b	PAC JOB NUMBER : Small daulter cut board S3						
CUSTO	CUSTOMER NAME : CYPRESS					Date : 4-06-2018 Rev : 3.1				
S.NO	REF DES	QTY	VALUE	JEDEC_TYPE	COMMENTS	MFR_PN	MFR	DESCRIPTION		
1	CN1	1	USB_TYPE-C	USB type C	-	DX07S024JJ2R1300	JAE Electronics	CONN RCPT USB3.1 TYPEC SMD R/A		
2	C11	1	4.7uF	1206C(W)	-	C1206C475K5RACTU	Kemet	CAP CER 4.7UF 50V X7R 1206		
3	C14, C17, C18	2	1uF	0603C(W)	-	UMK107AB7105KA-T	Taiyo Yuden	CAP CER 1UF 50V X7R 0603		
4	C16	1	47nF	0603C(W)	-	GRM188R71H473KA01D	Murata	CAP CER 0.047UF 50V X7R 0603		
5	C20	1	150pF	0603C(W)	-	C0603C151K5RACTU	Kemet	CAP CER 150PF 50V X7R 0603		
6	C21	1	100nF	0603C(W)	-	C0603C104K5RACTU	Kemet	CAP CER 0.1UF 50V X7R 0603		
7	C26	1	2.2uF	0603C(W)	-	GRM188R61H225KE11D		CAP CER 2.2UF 50V X5R 0603		
8	C24,C25,C27,C28	4	390pF	0603C(W)	-	C0603C391F5GACTU	Kemet	CAP CER 390PF 50V C0G/NP0 0603		
9	C29	1	220pF	0603C(W)		GRM1885C1H221JA01D		CAP CER 220PF 50V C0G/NP0 0603		
10	C30	1	1nF	0603C(W)		GRM1885C1H102JA01D		CAP CER 1000PF 50V C0G/NP0 0603		
					-					
11	C32	1	470nF	0603(W)		C0603C474K5RACTU	Kemet	CAP CER 0.47UF 16V X7R 0603		
12	C33	1	2.2uF	0805C(W)	-	UMK212B7225KG-T	Taiyo Yuden	CAP CER 2.2UF 16V X7R 0805		
13	C34	1	0.22uF/16V	1206(W)		C1206C224K5RACTU	Kemet	CAP CER 0.22UF 16V X7R 1206		
14	C35	1	10uf/16V	1206(W)		C1206C475K5RACTU	Kemet	CAP CER 10UF 16V X7R 1206		
15	C36	1	33nF/16V	0603(W)		C0603C333K5RACTU	Kemet	CAP CER 33nFF 50V X7R 0603		
15	D4	1	1N4148WS	SMD-(SOD-523)	-	1N4148WS-7-F	Diodes Inc	DIODE GEN PURP 75V 150MA SOD323		
16	Q4,Q5	2	DMP2007UFG-7	INF-PG-TSDSON-8-1_V	-	DMP2007UFG-7	Diodes Inc	MOSFET P-CH 20V 18A PWRDI3333-8		
17	Q6,Q7	2	DMP3068L-7	sot-23	-	DMP3068L-7	Diodes Inc	MOSFET N-CH 30V 4A SOT23-3		
18	R31,R33,R34,R40,RT2,RT3	6	100K	0603(W)	-	RC0603JR-07100KL	Yageo	RES SMD 100K OHM 5% 1/10W 0603		
19	R5	1	100K	0402(W)	-	RC0402FR-07100KL	Yageo	RES SMD 100K OHM 1% 1/16W 0402		
20	R9	1	51R	0603(W)	-	RC0603FR-0751RL	Yageo	RES SMD 51 OHM 1% 1/10W 0603		
21	R11	1	680ohm	0603(W)		RC0603FR-07680RL	YAGeo	RES SMD 680 OHM 1% 1/10W 0603		
22	R14	1	5mR	1206(W)	-		Riedon	RES SMD 0.005 OHM 1% 1W 1206		
23	R15	1	51R	0805(W)	-	RC0805JR-0751RL	Yageo	RES SMD 51 OHM 5% 1/8W 0805		
24	R17	1	4.7K	0603(W)	-	RC0603FR-074K7L	Yageo	RES SMD 4.7K OHM 1% 1/10W 0603		
25	R18	1	10R	0805(W)	-	RC0805FR-0710RL	Yageo	RES SMD 10 OHM 1% 1/8W 0805		
26	R20	1	5.23K	0603(W)	-	RC0603FR-075K23L	Yageo	RES SMD 5.23K OHM 1% 1/10W 0603		
27	R25	1	200K	0805(W)	-	RC0805JR-07200KL	Yageo	RES SMD 200K OHM 5% 1/8W 0805		
28	R32	1	56K	0603(W)	-	RC0603FR-0756KL	Yageo	RES SMD 56K OHM 1% 1/10W 0603		
29	R26	1	1K	0603(W)		RC0603FR-071KL	Yageo	RES SMD 1K OHM 1% 1/10W 0603		
30	R21A,R21B	2	100R	0603(W)		RC0603FR-07100rL	Yageo	RES SMD 100 OHM 1% 1/10W 0603		
31	U1	1	CYPD3174-24LQXIT	TQFN24_4X4	ustomer Supplie	CYPD3174-24LQXIT	Cypress	USB Type C Port Controller		
32	U2	1	VOL617A-3X001T	SO-4(P10) - photocoupler	-	VOL617A-3X001T	Vishay Semi	OPTOISOLATOR 5KV TRANS 4-LSOP		
33	U3	1	AP3302A	SOT-23-6	-	AP3302AK6TR-G1	Diodes Inc	IC OFFLINE CONV FLYBACK SOT26		
34	U5	1	AP2210	sot-23-1	-	AP2210N-3.3TRG1	Diodes Inco	IC REG LINEAR 3.3V 300MA SOT23-3		

3.3 Schematics Description

3.3.1 AC Input Circuit & Differential Filter

There are three components in the section. The Fuse F1 protects against over-current conditions which occur when some main components failed. The LF1 is a common mode chock for the common mode noise suppression filleting because of the each coil with large impedance. The BD1 is rectifier, and basically converts alternating current & voltage into direct current & voltage. The C1, L2, C2, C3 & C10 are composted of the Pi filter for filtering the differential switching noise back to AC source.

3.3.2 AP3302A PWM Controller

The AP3302A PWM controller U1 and Opto-coupler U2 as well Q1 are the power converting core components. The R13 & R16 two resistors will provide start-up voltage and current to AP3302A Vcc Pin 5 during starting up moment. Subsequent VCC voltage will be provided by voltage feedback from middle-tapped auxiliary winding through two options, when the output Vbus voltage is around 3V the Vcc will be provided by high side wending & through R8-D2-Q3-D3-ZD1 circuit and when the output Vbus voltage is around 12V that the Vcc will be provided by thought the low side wending & through the R12-D5, or depending on desired output voltage as well ZD1 zener voltage chosen. This design is to accommodate with the required wide voltage range to support various protocols (including QC 4/4+ & USB PD Programmable Power Supply PPS), from 5V, 9V, 12V & 3V to 11V.

Based on the feedback of secondary side (Pin CATH of CYPD3174 decoder) to primary side (FB pin of AP3302A) through Optocoupler U2, AP3302A will switch ON and Off Q1 to regulate desired voltage and current on the secondary side.

3.3.3 APR345 Synchronous Rectification (SR) MOSFET Driver

The APR345 operates in DCM mode in this design and drives the Q2 MOSFET based on the secondary side transformer on/off 's duty cycle. As the power loss with the APR345-controlled MOSFET Q2 is less than Schottky Diodes, the total efficiency can be improved.

3.3.4 CYPD3174 QC4/4+ Decoder & Protection on /off P MOSFET and Interface to Power Devices

The following pins provide critical protocol decoding and regulation functions in CYPD3174:

- 1) CC1 & CC2 (Pin 15, 14): CC1 & CC2 (Configuration Channel 1 & 2) are defined by USB PD spec to provide the channel communication link between power source and sink devices.
- 2) D+ & D- (Pin 17, 16): While defined under USB PD for data transfer only, D+ and D- are used in QC4+ to provide voltage information and backward compatibility with QC2.0 and QC3.0 devices.
- 3) Constant Voltage (CV): The CV is implemented by sensing VCC (pin 18) via resistor divider and comparing with internal reference voltage to generate a CV compensation signal on the CATH pin (pin 21). The output voltages can be adjusted by firmware programming.
- 4) Constant Current (CC): The CC is implemented by sensing the current sense resistor (R14, 5mΩ) and current sense amplifier, then comparing with internal programmable reference voltage setting to generate a compensation signal on CATH pin (pin 21)
- 5) Loop Compensation: C20, R20 & C16 form the voltage loop compensation circuit.
- 6) CATH (Pin 21): It is the key interface link from secondary decoder (CYPD3174) to primary regulation circuit (AP3302A). It is connected to Opto-coupler U2A cath for feedback information based all sensed CC1 & CC2, D+ & D- voltage status for getting desired Vbus voltage & current.
- 7) GATE Driver (Pin 3) to PMOSFET Gate: The pin is used to turn on / off Vbus load switch (Q4 & Q5) to enable/disable voltage output to the Vbus. An extra PMOSFET (Q5) is required to prevent reverse current from the attached battery source.
- 8) Vconn Power to support E-marker Type C cable by using U5, Q6 and Q7: There is a Vconn power circuit provided thought CC1 & CC2 for E-marker cable detecting, Q6 & Q7 on/off are controlled by CYPD3174 pin 1 & pin 2.

Chapter 4: Evaluation Board Connections 4.1 Quick Start Guide Before Connection

1) Before starting the QC4/4+ 27W EVB test, the end user needs to prepare the following tool, software and manuals.

For details, please contact Cypress Semiconductor local sales for further information.

- o QC2.0 & 3.0 Test Kit: https://detail.1688.com/offer/534013607443.html
- o Software: GUI USBCEE Advanced USB PD Tester V1.2 from USBCEE (available with purchase of Cypress Test kit).
- Firmware version in CYPD3174-24LQXQIT decoder IC: CYPD3174-24LQXQ(FW_1503 or above)
- To buy a USB-C POWER ADAPTER PROGRAMMER AND TESTER (blue color) https://www.usbcee.com/products/1

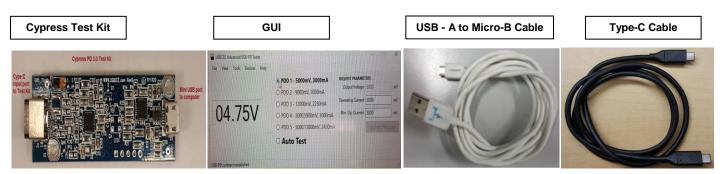


Figure 4: Cypress Items: Test Kit / PC Test GUI Software /Test Cables

- 2) Prepare a certified three-foot Type-C cable and a Standard-A to Micro-B Cable.
- 3) Connect the input AC L & N wires to AC power supply output "L and N "wires.
- 4) Ensure that the AC source is switched OFF or disconnected before the connection steps.

Figure 5: The Sample Board Input & Output Location

- 5) Use a type-C cable for the connection between EV2 board to Cypress's Type-C receptacles.
- 6) Use 2 banana jack cables, one port of the cables are connected to E-load + & terminals while the other port of the cables are connected to 27W QC4 unit's VBUS & GND holes.
- A Standard-A to Micro-B cable to be connected to the Cypress test kit's Micro-B receptacle & PC Standard-A receptacle respectively.

4.2 System Connection Setup

4.2.1 Connection with E-Load

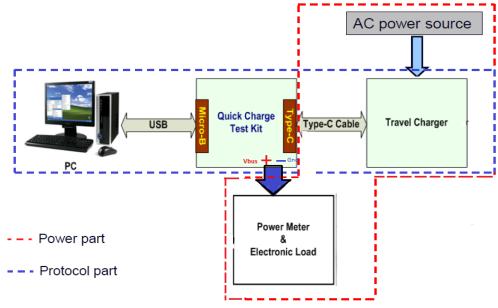


Figure 6: Diagram of Connections in the Sample Board

4.2.2 Cypress Test Kit

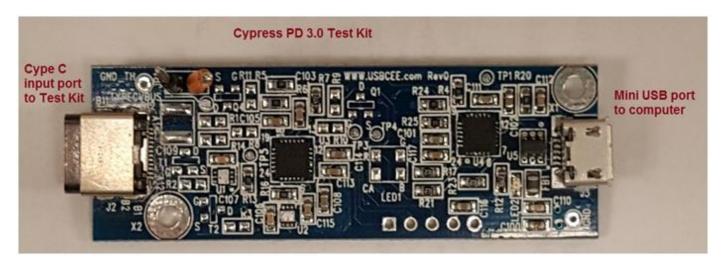


Figure 7: The Test Kit Input & Output and E-load Connections

4.2.3 The sample board Input & Output Wires Connection and QC2.0/3.0 Emulator connection

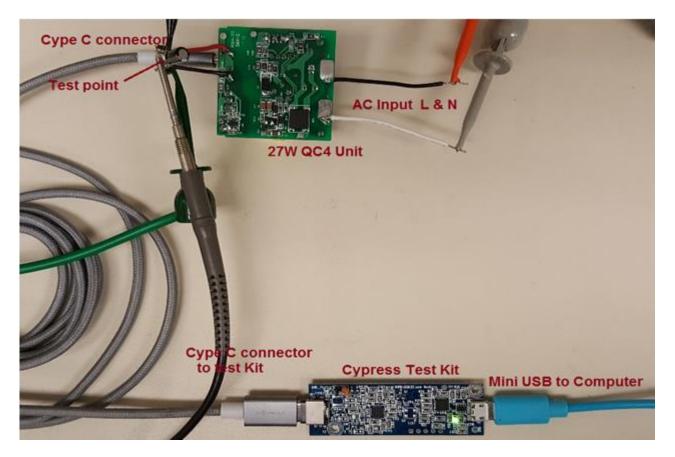


Figure 8: Wire Connection of 27W QC4/4+ EVB to Test Kit and PC Computer

Or using the QC2.0/QC3.0 emulator test Kit to testing the QC2.0 & QC3.0 functions, see the connection the between testing sample board to DC load by mean of a USB-C to USB A converting cable.

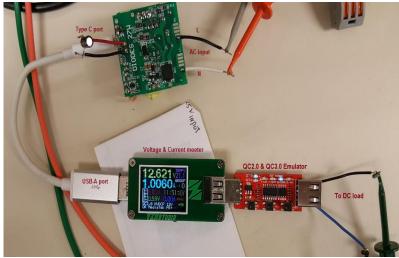


Figure 9: Wire Connection of 27W QC4/4+ EVB to QC2.0/3.0 Test Kit

Chapter 5: Testing the Evaluation Board

5.1 Input & Output Characteristics

5.1.1 Input Standby Power

@No Lo	bad	+5VDC							
Vin(Vac)	Fin (Hz)	Vin(V)	lin (mA)	PF	Pin(mW)	Vout(V)	lout(A)	Pout(W)	Pd(W)
90	47	89.97	3.4069	0.0963	29.52	*	*	*	*
115	60	115.03	3.2842	0.0791	29.88	*	*	*	*
230	50	230.15	2.9293	0.0634	42.6	*	*	*	*
264	63	264.26	2.842	0.0632	47.4	*	*	*	*

5.1.2 Input Power Efficiency at Different AC Line Input Voltage

5.1.3 Average Efficiency at Different Loading

Aerage efficiency(+12VDC)

Vin (Vac)	Fin (Hz)	Vin(V)	Iin (A)	PF	Pin (W)	Vout(V)	Iout (A)	Pout (W)	Pd(W)	Eff(%)	Average EFF(%)
115	60	114.98	0.47774	0.5391	29.611	11.7884	2.2512	26.538	3.0729539	89.62%	
115	60	114.99	0.37842	0.5123	22.293	11.802	1.6878	19.9194	2.3735844	89.35%	89.06%
115	60	115.00	0.2710	0.4779	14.891	11.8073	1.1252	13.2856	1.605426	89.22%	89.00%
115	60	115.02	0.15207	0.4315	7.548	11.8163	0.5623	6.64431	0.9036945	88.03%	
230	50	230.08	0.31255	0.4096	29.46	11.7882	2.2512	26.5376	2.9224042	90.08%	
230	50	230.13	0.24711	0.3912	22.24	11.801	1.6878	19.9177	2.3222722	89.56%	00.000/
230	50	230.14	0.18125	0.3583	14.94	11.8084	1.1252	13.2868	1.6531883	88.93%	88.89%
230	50	230.15	0.09334	0.3559	7.64	11.8186	0.5623	6.6456	0.9944012	86.98%	

Aerage efficiency(+9VDC)

Vin (Vac)	Fin (Hz)	Vin(V)	Iin (A)	PF	Pin (W)	Vout(V)	Iout (A)	Pout (W)	Pd(W)	Eff(%)	Average EFF(%)
115	60	114.99	0.49156	0.5393	30.483	9.0424	3.0006	27.1326	3.3503746	89.01%	
115	60	114.98	0.39013	0.5078	22.811	9.0628	2.2512	20.4022	2.4088246	89.44%	89.32%
115	60	115.00	0.2920	0.4520	15.175	9.0732	1.5001	13.6107	1.5642927	89.69%	07.3270
115	60	115.01	0.17458	0.3807	7.645	9.0855	0.75	6.81413	0.830875	89.13%	
230	50	230.16	0.33052	0.3977	30.26	9.0411	3.0006	27.1287	3.1312753	89.65%	
230	50	230.12	0.2628	0.3766	22.77	9.0621	2.2512	20.4006	2.3694005	89.59%	88.99%
230	50	230.14	0.19534	0.3402	15.29	9.0732	1.5001	13.6107	1.6792927	89.02%	88.9976
230	50	230.07	0.10983	0.3077	7.77	9.0842	0.75	6.81315	0.95685	87.69%	

Aerage efficiency(+5VDC)

Vin(Vac)	Fin (Hz)	Vin(V)	Iin (A)	PF	Pin (W)	Vout(V)	Iout (A)	Pout (W)	Pd(W)	Eff(%)	Average EFF(%)
115	60	115.00	0.32056	0.4563	16.82	4.9059	3.0006	14.7206	2.0993565	87.52%	
115	60	115.00	0.23996	0.461	12.719	4.9257	2.2512	11.0887	1.6302642	87.18%	87.53%
115	60	115.01	0.1888	0.3886	8.438	4.9398	1.5001	7.41019	1.027806	87.82%	01.3370
115	60	115.01	0.10662	0.3458	4.24	4.9532	0.75	3.7149	0.5251	87.62%	
230	50	230.12	0.21543	0.3435	17.03	4.9058	3.0006	14.7203	2.3096565	86.44%	
230	50	230.14	0.17082	0.3247	12.763	4.9253	2.2512	11.0878	1.6751646	86.87%	06 3 49/
230	50	230.11	0.12056	0.3091	8.585	4.9393	1.5001	7.40944	1.1755561	86.31%	86.24%
230	50	230.04	0.06462	0.2929	4.353	4.9526	0.75	3.71445	0.63855	85.33%	

Aerage efficiency(+3.0VDC)

Vin(Vac)	Fin (Hz)	Vin(V)	Iin (A)	PF	Pin (W)	Vout(V)	Iout (A)	Pout (W)	Pd(W)	Eff(%)	Average EFF(%)
115	60	115.01	0.24034	0.42	10.75	3.028	3.0006	9.08582	1.6641832	84.52%	
115	60	115.01	0.19542	0.3872	8.067	3.026	2.2512	6.81213	1.2548688	84.44%	84.28%
115	60	115.02	0.1422	0.3559	5.386	3.02	1.5001	4.5303	0.855698	84.11%	04.20%
115	60	115.02	0.07583	0.3339	2.695	3.02	0.75	2.265	0.43	84.04%	
230	50	230.09	0.16144	0.3194	10.872	3.03	3.0006	9.09182	1.780182	83.63%	
230	50	230.14	0.1251	0.309	8.223	3.027	2.2512	6.81438	1.4086176	82.87%	82.77%
230	50	230.14	0.08654	0.3007	5.48	3.02	1.5001	4.5303	0.949698	82.67%	04.7790
230	50	230.05	0.04682	0.2823	2.756	3.01	0.75	2.2575	0.4985	81.91%	

5.2 QC4/4+ & PPS Compatible Mode Testing

5.2.1 QC 2.0 Mode Testing by using the QC2.0/3.0 Emulator board

QC2.0 test: to click the emulator board "+ V" button for selecting desired the charger output voltage @ 5V/9V/12V

12.62V

5.2.2. QC 3.0 Continuous Mode 200mV/Step Testing

Enable click "+" or "-" to transit one rising pulses or falling pulses to do the 200mV increment/decrement per step.

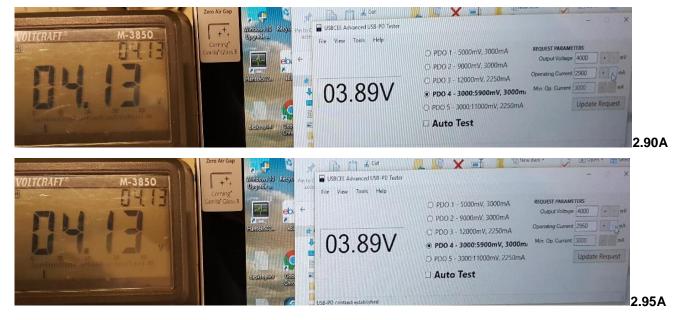
5.1988V

5.5999V

5.7984V

5.2.3 QC4/4+ CV Accuracy 20mV/Step Testing (@ PPS Support 3V~5.99V & 3V~11V)

Go to PPS 3V ~5.99V 3A push + once for getting 20mV step voltage up & push - botton for -20mV step down


5.2.4 PPS 3V ~ 11V voltage arrange & current arrange 3A & @11V< 2.454A

6.130V to 6.150V with 20mV step

5.2.5 QC4/4+ CC Accuracy 50mA/Step Testing (PPS Support)

To push current '+' botton, the +50mA step up and push current '-' botton, the -50mA step down.

5.2.6 CC Mode current limitation function testing by using E-Load set at CR mode

PPS at \$	5.0V CC m	ode curren	t limit is set	PPS at 5	PPS at 5.0V CC mode current is set at 3A				
Pin	Vo	CR = Ω	converted	CC limited	Pin	Vo	CR = Ω	converted	
5.63w	4.93V	5.0Ω	1A	1A	15.4W	4.75V	1.666Ω	3A	
5.81w	4.48V	4.00Ω	1.25A	1.10A	17.4W	4.71V	1.428Ω	3.5A	
4.49w	3.38V	3.00Ω	1.67A	1.103A	17.9W	4.48V	1.25Ω	4.0A	
4.06w	2.86V	2.50Ω	2A	1.112A	15.1W	3.66V	1.10Ω	5.0A	

To PPS Mode set 5V-1A & 5V-3A and then increase the curreent (by reducing R) to see the CC-CV cuve

To PPS Mode set 9V-1A & 9V-3A and then increase the curreent (by reducing R) to see the CC-CV cuve

PPS at 9	PPS at 9.0V CC mode current limit is set at 1A				PPS at 9.0V CC mode current is set at 3A				
Pin	Vo	CR = Ω	converted	CC limited	Pin	Vo	CR = Ω	converted	CC limit
10.31w	9.00V	9.0Ω	1A	1A	29.2W	8.84V	3.0Ω	3A	2.95A
9.82w	7.78V	7.00Ω	1.285A	1.102A	32.7W	8.59V	2.57Ω	3.5A	3.25A
7.78w	6.09V	5.50Ω	1.64A	1.102A	29.1W	7.60V	2.25Ω	4A	3.25A
6.47w	5.02V	4.5Ω	2.00A	1.103A					

To PPS Mode set 11V-1A & 11V-2.454A and then increase the curreent (by reducing R) to see the CC-CV cuve

PPS at 1	PPS at 11V CC mode current is set at 1A				PPS at 11V CC mode current is set at 2.25A					
Pin	Vo	CR = Ω	converted	CC limited	Pin	Vo	CR = Ω	converted	CC limited	
12.46w	10.98V	11.0Ω	1A	1A	30.1w	10.95V	4.48Ω	2.454A	2.41A	
11.20w	9.88V	9.00Ω	1.375A	1.1A	29.65w	9.82V	3.66Ω	3A	2.624A	
9.84w	7.79V	7.00Ω	1.571A	1.104A	25.75w	8.49V	3.143Ω	3.5A	2.623A	
7.81w	6.11V	5.5Ω	2.00A	1.105A	22.65w	7.42V	2.75Ω	4A	2.622A	

5.3 Key Performance Waveforms

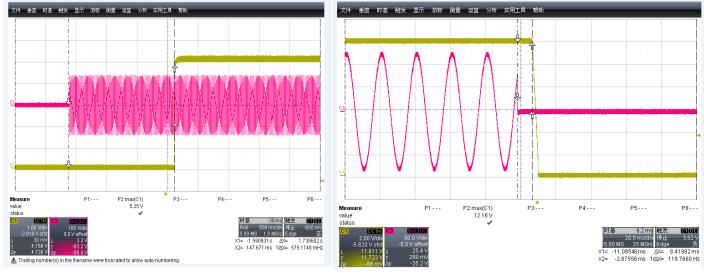


Figure 11: 27w QC4/4+ turn on time 1.74s FL at 90Vac

Figure 12: 27w QC4/4+ hold time 8.42ms at 12V- 2.25A, at 90Vac

5.3.2 Q1 /Q2 Main Switching Voltage MOSFET Stress on at 12V/ 2.25A Loading

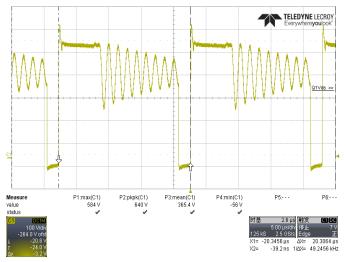
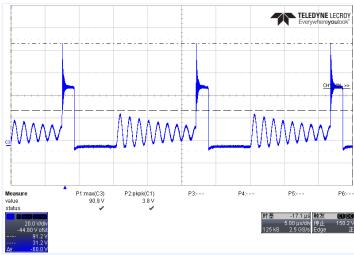
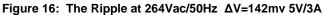
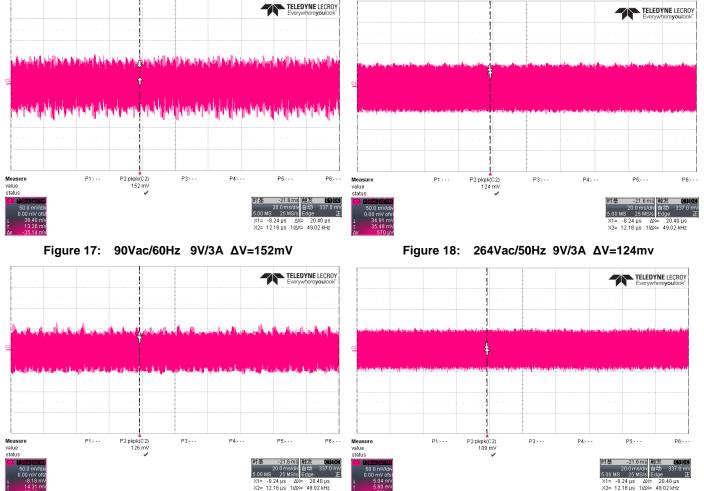


Figure 13: 264Vac/50Hz Primary Q1 Vds(max)= 584Vp-p




Figure 14: 264Vac/50Hz Secondary Q2 Vds(max) = 90.9Vp-p



5.3.3 System Output Ripple & Noise with @ 1.2m Cable End

Figure 15: The Ripple at 90Vac/60Hz ΔV=170mV 5V/3A

X1= -8.24 μs ΔX= 20.40 μs X2= 12.16 μs 1/ΔX= 49.02 kHz

Figure 19: 90Vac/60Hz 12V/2.25A ΔV=126mV

5.3.4 Output Voltage Transition Time

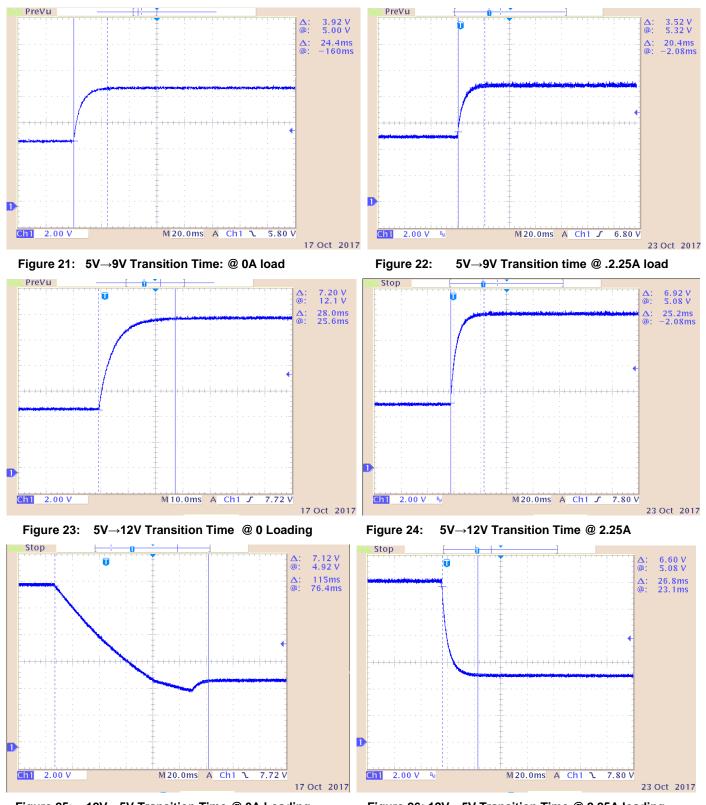
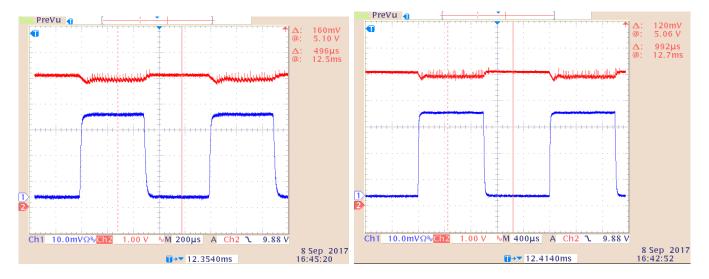



Figure 25: 12V \rightarrow 5V Transition Time @ 0A Loading

Figure 26: 12V \rightarrow 5V Transition Time @ 2.25A loading

5.3.5 Dynamic loading performance test from 0A ~ 3A

Figure 27: Dynamic Load 0A ~ 3A @ 1Khz @115Vac

Figure 28: Dynamic Load 0A ~ 3A @ 0.5Khz @115Vac

5.3.6 Thermal Testing

Test Condition: Vin=90V Vo=9V Io=3A Open Frame at room Temperature +25 C

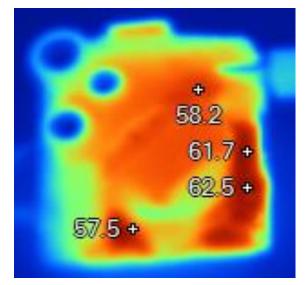


Figure 29: components side

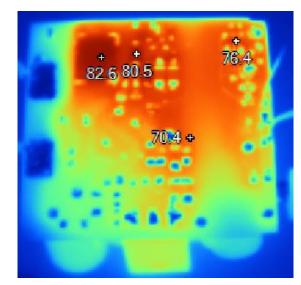
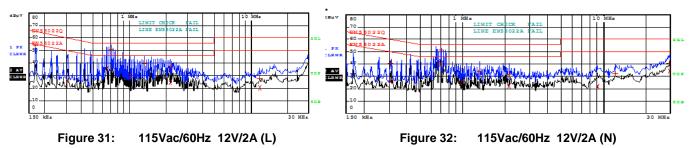



Figure 30: surface mount side

	Temperature
Ambient Temp.	24.7°C
Bridge	82.6°C
Q3	80.5°C

5.3.7 EMI (CE) Testing

	ulte)	Measurément Re	T PEAK LIST (Final	
Tracel			EN55022Q	racel:
Traces			EN55022A	race2:
Tracel				race3:
	DELTA LIMIT dB	LEVEL dBµV	FREQUENCY	TRACE
1 01	-10.79	54.16	170 kH=	l Quasi Peak
2 A.	-23.82	26.14	310 kHz	2 Average
1 01	-10.59	35.40	650 kH =	2 Average
2 81	-5.26	50.73	706 XH =	l Quasi Peak
2 81	-16.21	29.78	1.018 MHz	2 Average
1 01	-16.36	39.63	1.326 MHz	l Quasi Peak
1 01	-18.42	37.57	2.154 MHz	l Quasi Peak
2 3	-21.35	24.64	2.154 MHz	2 Average
	-32.36	27.63	11.746 MH =	l Quasi Peak
2 A.	-29.61	20.39	11.966 MH ±	2 Average
1 0,	-14.71	35.29	29.318 MH =	2 Average
1 01	-18.91	41.08	29.45 MHz	1 Quasi Peak
2 A.				

	EDI	T PEAK LIST (Final	Measurement Resul	te)
Trad	cel:	EN55022Q		
Tra	ce2:	EN55022A		
Tra	ce3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	310 kH=	40.29	-19.67
2	Average	310 kHz	25.85	-24.11
1	Quasi Peak	702 kHz	51.71	-4.28
2	Average	702 kH=	40.04	-5.95
2	Average	962 kHz	24.34	-21.65
1	Quasi Peak	1.322 MHz	34.50	-21.49
1	Quasi Peak	2.13 MHz	31.52	-24.47
2	Average	2.13 MHz	22.00	-23.99
2	Average	9.162 MH±	21.93	-28.06
1	Quasi Peak	12.218 MH±	31.98	-28.01
1	Quasi Peak	29.466 MH ±	40.57	-19.42
2	Average	29.63 MHz	34.48	-15.51

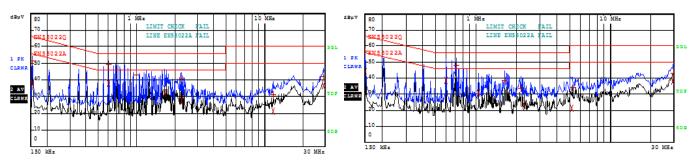


Figure 33: 230Vac/50Hz 12V/2A (L)

Figure 34: 230Vac/50Hz 12V/2A (N)

EDI	T PEAK LIST (Fin:	al Measurement Re	sults)	EDIT PEAK LIST (Final Measurement Results)						
Fracel:	EN55022Q			Tra	acel:	EN55022Q				
Trace2:	EN55022A			Tra	ace2:	EN55022A				
Trace3:				Tra	ace3:					
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB		TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT di		
1 Quasi Peak	154 kHr	51.43	-14.34	1	Quasi Peak	150 kHz	56.70	-9.29		
2 Average	154 kHz	37.83	-17.94	2	Average	150 kHz	44.21	-11.78		
1 Quasi Peak	602 kHz	49.41	-6.58	2	Average	598 %H±	38.38	-7.61		
2 Average	602 kHz	37.97	-8.02	1	Quasi Peak	714 kHz	48.08	-7.91		
1 Quasi Peak	998 kHz	43.08	-12.91	2	Average	1.05 MH=	30.61	-15.38		
2 Average	1.65 MHz	31.96	-14.03	1	Quasi Peak	1.646 MH±	38.82	-17.17		
l Quasi Peak	2.254 MHz	40.37	-15.63	1	Quasi Peak	2.166 MHz	33.64	-22.35		
2 Average	2.254 MHz	27.74	-18.25	2	Average	2.298 MHz	22.94	-23.05		
1 Quasi Peak	11.75 MHz	31.18	-28.81	2	Average	5.23 MH±	21.36	-28.63		
2 Average	11.75 MHz	21.19	-28.80	1	Quasi Peak	5.278 MH±	34.10	-25.89		
2 Average	29.014 MH =	36.52	-13.47	2	Average	29.446 MHz	38.17	-11.82		
1 Quasi Peak	29.15 MHz	41.84	-18.15	1	Quasi Peak	29.61 MHx	43.47	-16.52		

L		N			
QP	QP AV		AV		
-6.58B	-8.02dB	-7.91dB	-7.61dB		

Chapter 6: Revision Control

6.1 Revision table

The Change list from Rev 1.0 to Rev1.1

No #	Items Changed & added	The changing reason
1	C8= 820u F/16V from 680uF/16V	For improving Vbus Ripple @ Full 3A loading
2	R29,R30=0.75 ohm 1% 1206	For increasing OPP power level to supporting Pout = 33W
3	Add in C34=0.22uf/16V cap 1206 // R15	For flitting Gnd noise into CYPD3174
4	Add in a 33nf/16V 0603 // with R11	For reducing an oscillation @3.2v-3A
5	C32=470nF/16V 0603	Pin 9 need a holding CAP for CC-CV Mode
6	C16=47nf/16V 0603	For improving undershot voltage drop during at 3V-11V transition mode
7	C33=2.2uF/16V 0805	For increasing holding time when Vbus off
8	R8=2.20hm 1/8W0805	For reducing voltage transient stress
9	Add in C35 10uF/16V 1206 cap	For improving the Vp-p ripple voltage

6.2 USB IF Power Brick Certification Test detail

- 1, USB IF Power Brick Certification name: PD3.0 +PPS
- 2, Diodes Product Marketing name: PD3.0 27W Quick Charge(with CYPD3174-decoder)
- 3, AC-DC 27W PD3.0 Quick Charge Rev 3.1
- 4, Test TID: 1080032
- 5, Certification Testing & Passing date: 4-27-2018
- 6, USB IF Certified list link: <u>http://www.usb.org/kcompliance/ilist</u>

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

- 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com