DESCRIPTION
The AP63200 is a 2A, synchronous buck converter with a wide input voltage range of 3.8V to 32V and fully integrates a 125mΩ high-side power MOSFET and a 68mΩ low-side power MOSFET to provide high-efficiency step-down DC/DC conversion.

The AP63200 device is easily used by minimizing the external component count due to its adoption of peak current mode control along with its integrated compensation network.

The AP63200 has optimized designs for Electromagnetic Interference (EMI) reduction. The converter features Frequency Spread Spectrum (FSS) with a switching frequency jitter of ±6%, which reduces EMI by not allowing emitted energy to stay in any one frequency for a significant period of time. It also has a proprietary gate driver scheme to resist switching node ringing without sacrificing MOSFET turn-on and turn-off times, which further reduces high-frequency radiated EMI noise caused by MOSFET switching.

The device is available in a low-profile, TSOT26 package.

FEATURES
- VIN 3.8V to 32V
- 2A Continuous Output Current
- 0.8V ± 1% Reference Voltage
- 22µA Ultralow Quiescent Current (Pulse Frequency Modulation)
- 500kHz Switching Frequency
- Supports Pulse Frequency Modulation (PFM) and Pulse Width Modulation (PWM)
- Proprietary Gate Driver Design for Best EMI Reduction
- Frequency Spread Spectrum (FSS) to Reduce EMI
- Low-Dropout (LDO) Mode
- Precision Enable Threshold to Adjust UVLO
- Protection Circuitry
 - Undervoltage Lockout (UVLO)
 - Cycle-by-Cycle Peak Current Limit
 - Thermal Shutdown
APPLICATIONS

- 12V and 24V Distributed Power Bus Supplies
- Flat Screen TV Sets and Monitors
- Power Tools and Laser Printers
- White Goods and Small Home Appliances
- FPGA, DSP, and ASIC Supplies
- Home Audio
- Network Systems
- Set Top Boxes
- Gaming Consoles
- Consumer Electronics

FUNCTIONAL BLOCK

Figure 1. Functional Block Diagram
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Supply Voltage</td>
<td>-0.3 to +35.0 (DC)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.3 to +40.0 (400ms)</td>
<td></td>
</tr>
<tr>
<td>V_{SW}</td>
<td>Switch Node Voltage</td>
<td>-1.0 to V_{IN} + 0.3 (DC)</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.5 to V_{IN} + 2.0 (20ns)</td>
<td></td>
</tr>
<tr>
<td>V_{BST}</td>
<td>Bootstrap Voltage</td>
<td>V_{SW} - 0.3 to V_{SW} + 6.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback Voltage</td>
<td>-0.3 to +6.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{EN}</td>
<td>Enable/UVLO Voltage</td>
<td>-0.3 to +35.0</td>
<td>V</td>
</tr>
<tr>
<td>T_{ST}</td>
<td>Storage Temperature</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{J}</td>
<td>Operating Junction Temperature</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{L}</td>
<td>Lead Temperature</td>
<td>+260</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>ESD Susceptibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBM</td>
<td>Human Body Mode</td>
<td>2000</td>
<td>V</td>
</tr>
<tr>
<td>CDM</td>
<td>Charge Device Model</td>
<td>1000</td>
<td>V</td>
</tr>
</tbody>
</table>

RECOMMENDED OPERATING CONDITIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Supply Voltage</td>
<td>3.8</td>
<td>32</td>
<td>V</td>
</tr>
<tr>
<td>T_{A}</td>
<td>Operating Ambient Temperature Range</td>
<td>-40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>T_{J}</td>
<td>Operating Junction Temperature Range</td>
<td>-40</td>
<td>+125</td>
<td>°C</td>
</tr>
</tbody>
</table>
EVALUATION BOARD

Figure 2. AP63200WU-EVM

QUICK START GUIDE

The AP63200WU-EVM has a simple layout and allows access to the appropriate signals through test points. To evaluate the performance of the AP63200WU, follow the procedure below:

1. For evaluation board configured at $V_{OUT}=12V$, connect a power supply to the input terminals V_{IN} and GND. Set V_{IN} to 24V.

2. Connect the positive terminal of the electronic load to V_{OUT} and negative terminal to GND.

3. For Enable, place a jumper to “H” position to enable IC. Jump to “L” position to disable IC.

4. The evaluation board should now power up with a 12V output voltage.

5. Check for the proper output voltage of 12V ($\pm 1\%$) at the output terminals V_{OUT} and GND. Measurement can also be done with a multimeter with the positive and negative leads between V_{OUT} and GND.

6. Set the load to 2A through the electronic load. Check for the stable operation of the SW signal on the oscilloscope. Measure the switching frequency.
MEASUREMENT/PERFORMANCE GUIDELINES:

1) When measuring the output voltage ripple, maintain the shortest possible ground lengths on the oscilloscope probe. Long ground leads can erroneously inject high frequency noise into the measured ripple.

2) For efficiency measurements, connect an ammeter in series with the input supply to measure the input current. Connect an electronic load to the output for output current.

EXTERNAL COMPONENT SELECTION:

(1) Setting the output voltage:
The AP63200WU features external programmable output voltage by using a resistor divider network R3 and R1 as shown in the typical application circuit. The output voltage is calculated as below,

\[
V_{OUT} = 0.8 \times \left(\frac{R_1 + R_3}{R_1} \right)
\]

First, select a value for R1 according to the value recommended in the table 1. Then, R3 is determined. The output voltage is given by Table 1 for reference. For accurate output voltage, 1% tolerance is required.

(2) Output feed-forward capacitor selection:
The AP63200WU has the internal integrated loop compensation as shown in the function block diagram. The compensation network includes an 18k resistor and a 7.6nF capacitor. Usually, the type II compensation network has a phase margin between 60 and 90 degrees. However, if the output capacitor has ultra-low ESR, the converter results in low phase margin. To increase the converter phase margin, a feed-forward cap C4 is used to boost the phase margin at the converter cross-over frequency, \(f_C \). The feed-forward capacitor is given by Table 1 for reference. The feed-forward capacitor is calculated as below,

\[
C_4 = \frac{1}{2\pi \times f_C \times R_3}
\]

<table>
<thead>
<tr>
<th>(V_{OUT})</th>
<th>R3</th>
<th>R1</th>
<th>C4</th>
<th>C6-C8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8V</td>
<td>77.5 KΩ</td>
<td>62 KΩ</td>
<td>100pF</td>
<td>22uFx2</td>
</tr>
<tr>
<td>2.5V</td>
<td>131 KΩ</td>
<td>62 KΩ</td>
<td>100pF</td>
<td>22uFx2</td>
</tr>
<tr>
<td>3.3V</td>
<td>182 KΩ</td>
<td>62 KΩ</td>
<td>100pF</td>
<td>22uFx2</td>
</tr>
<tr>
<td>5V</td>
<td>157 KΩ</td>
<td>30 KΩ</td>
<td>100pF</td>
<td>22uFx2</td>
</tr>
<tr>
<td>12V</td>
<td>249 KΩ</td>
<td>18 KΩ</td>
<td>56 pF</td>
<td>22uFx4</td>
</tr>
</tbody>
</table>

Table 1. Resistor selection for common output voltages
(3) External Component Selection

a) Input & output Capacitors (C_{IN}, C_{OUT})
 (1) For lower output ripple, low ESR is required.
 (2) For low leakage current, X5R/X7R ceramic is recommend in multiple capacitor parallel connections.
 (3) The C_{IN} capacitances are greater than 10uF.
 (4) 44µF ceramic output capacitors are recommended to work for most applications, due to a capacitor’s de-rating under DC bias, The 88uF is recommend for high output voltage condition. The output capacitor selection is shown in table 1.

b) Bootstrap Capacitor
 An external 0.1µF ceramic capacitor is required as bootstrap capacitor between BST and SW pin to work as high side power MOSFET gate driver.

c) Inductor (L)
 (1) Low DCR for good efficiency
 (2) Inductance saturate current must higher than the output current.
 (3) The recommended inductance values are shown in table 2.

Table 2 shows a list of recommended inductors for common output voltages.

<table>
<thead>
<tr>
<th>V_{OUT}</th>
<th>1.8V</th>
<th>2.5V</th>
<th>3.3V</th>
<th>5.0V</th>
<th>12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductor</td>
<td>3.3µH</td>
<td>3.3µH</td>
<td>6.8µH</td>
<td>10µH</td>
<td>15µH</td>
</tr>
<tr>
<td>Wurth Part</td>
<td>744 393 440 33</td>
<td>744 393 440 33</td>
<td>744 393 460 68</td>
<td>744 393 461 00</td>
<td>744 770 915 0</td>
</tr>
</tbody>
</table>

Table 2. Recommended Inductor Selection

EVALUATION BOARD SCHEMATIC

Figure 3. AP63200WU-EVM Schematic
PCB TOP LAYOUT

Figure 4. AP63200WU-EVM – Top Layer

PCB BOTTOM LAYOUT

Figure 5. AP63200WU-EVM – Bottom Layer
BILL OF MATERIALS for AP63200WU-EVM (V_{OUT}=12V)

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Type</th>
<th>Rating</th>
<th>Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>10uF</td>
<td>X5R/X7R, Ceramic/1206</td>
<td>35V</td>
<td>Input CAP</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0.1uF</td>
<td>X5R/X7R, Ceramic/0603</td>
<td>50V</td>
<td>Input CAP</td>
<td>Würth Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>885 012 206 095</td>
</tr>
<tr>
<td>C4</td>
<td>56pF</td>
<td>0603</td>
<td>100V</td>
<td>Feedback CAP</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td>0.1uF</td>
<td>X5R/X7R, Ceramic/0603</td>
<td>50V</td>
<td>Bootstrap CAP</td>
<td>Würth Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>885 012 206 095</td>
</tr>
<tr>
<td>C6, C7, C8</td>
<td>22uFx4</td>
<td>X5R/X7R, Ceramic/1206</td>
<td>25V</td>
<td>Output CAP*</td>
<td>Würth Electronics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7447709150</td>
</tr>
<tr>
<td>L1</td>
<td>15uH</td>
<td>SMD</td>
<td>6.5A</td>
<td>Inductor*</td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>18KΩ</td>
<td>0603</td>
<td>1%</td>
<td>Voltage RES*</td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>249KΩ</td>
<td>0603</td>
<td>1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>0</td>
<td>0603</td>
<td>1%</td>
<td>Bootstrap RES</td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>AP63200WU</td>
<td>TSOT26</td>
<td></td>
<td></td>
<td>Diodes Inc</td>
</tr>
</tbody>
</table>

Note: The present values of R3/R1, C6, C7, C8, L1 are based on V_{OUT}=12V
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Efficiency for VIN=12V, VOUT=1.8V / 3.3V / 5.0V

Figure 7. Efficiency for VIN=24V, VOUT=12V
Figure 8. Output Ripple for \(V_{IN}=12V \), \(V_{OUT}=5.0V \), \(I_{OUT}=2A \)

![Output Ripple for VIN=12V, VOUT=5.0V, IOUT=2A](image)

VOUT\(_{AC}\) (20mV/div)

IL (1A/div)

VSW (10V/div)

2µS/div

Figure 9. Output Ripple for \(V_{IN}=24V \), \(V_{OUT}=12V \), \(I_{OUT}=2A \)

![Output Ripple for VIN=24V, VOUT=12V, IOUT=2A](image)

VOUT\(_{AC}\) (20mV/div)

IL (1A/div)

VSW (20V/div)

2µS/div
IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com