

10W Cost-Effective Charge AP3983R + APR3415B EV1 Evaluation Board User Guide

Contents

Chapter 1. Summary	2
1.1 General Description 1.2 Key Features 1.3 Applications 1.4 Main Power Specifications (CV & CC Mode) 1.5 Evaluation Board Picture: Chapter 2. Power Supply Specification	2 2 2 2
2.1 Specification and Test Results 2.1 Transformer Specification	4
3.1 Evaluation Board Schematic	6
4.1 Evaluation Board PCB Layout	7
5.1 Input & Output Characteristics 5.1.1 Input Standby Power	
5.2.1 System start - up time	9
5.3 Thermal Test data at room Temperature after running 1 hr5.4.1 System EMIL - Line Scan Data @115Vac125.4.2 System EMIN - Line Scan Data @ 115Vac135.4.3 System EMIL - Line Scan Data @ 230Vac135.4.4 System EMIN-Line Scan Data @230Vac14	12

Chapter 1. Summary

1.1 General Description

Based on Primary Side Regulation (PSR) Flyback topology, the 10W Charger EV1 Evaluation board is designed as an MP-form-factor, cost-effective, optimal efficiency, charger reference design to facilitate further customization by users. AP3983R PSR Switcher, copackaged a 700V N-MOSFE and a PSR control die, along with APR3415B Synchronous Rectification (SR) Switcher, co-packaged a MOS die with an SR controller, enable high-efficiency and small size form-factor 10W charger designs. The overall efficiency of the evaluation board can meet DOE VI and CoC Tier 2 energy efficiency requirements.

1.2 Key Features 1.2.1 AP3983R

- 90 ~264V_{AC} input range
- · Primary side regulation without an Opto-coupler.
- Co-package PSR controller with 700V MOS die in SO-7 Package
- Multi-Mode PFM method operations, the switching frequency between 24Khz and 80Khz.
- With Valley-on detection for switching at Valley-on region to improve power converting efficiency & EMI performance.
- Burst mode operation and low start-up operating quiescent current to achieve 75mW low standby power
- Three-mode operation to provide accurate constant voltage (CV) regulation & constant current (CC) performance.
- Soft start during startup process and built-in Jittering Frequency function to improve EMI emission.
- Internal Auto Recovery OCP, OVP, OLP, OTP Power Protection, cycle by cycle current limit, also with DC polarity protection
- Built-in Cable Compensation mode.
- Brown out Protection.

1.2.2 APR3415B

- Synchronous rectification of DCM Operation
- Co-package 50V 17mΩ Rdson MOS die with SR Controller in SO-8 package
- Eliminate resonant ring interference
- Fast detection of supply voltage
- Minimum supporting components

1.3 Applications

- Switching AC-DC Adaptors & Chargers
- · Home Appliances system powers
- Auxiliary Vcc power supply for large power systems

Parameter	Value
Input Voltage	90 to 264VAC
Input standby power	75mW
Main output Vo / Io	5V - 2.0A
Efficiency	~ 85%
Total Output Power	10W
Protections	OCP, OVP, OLP,OTP
XYZ Dimension	29 x 32 x 15 mm
ROHS Compliance	Yes

1.5 Evaluation Board Picture:

Figure 1: Top View

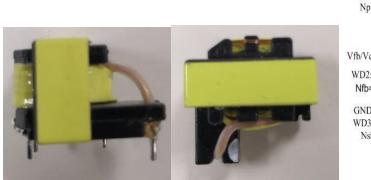
Figure 2: Bottom View

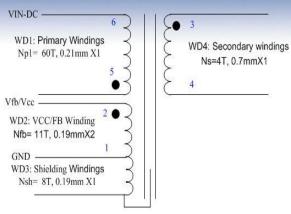
10W Cost-Effective Charge AP3983R + APR3415B EV1 Evaluation Board User Guide

Chapter 2. Power Supply Specification

2.1 Specification and Test Results

Parameter	Test conditions	Min	Nom	Max	Eff /DOE Level VI	Eff /CoC V5 Tier2	Test Summary
V _{ACIN} Input Voltage	-	90 V _{RMS}	115/230	264 V _{RMS}	-	-	-
F _{LINE} Frequency	-	47Hz	50/60	64Hz	-	-	-
I _{IN} Input Current	-	-	-	0.23 A _{RMS}	-	-	Pass
No load Pin	At 230Vac/50Hz, @ 5V, Pin < 75mW	-	-	75mW	-	-	Pass, 230Vac: 46mW
5VDC / 2A @115Vac/230Vac Average efficiency	Board end	-	5V/2A	-	78.7%		Pass, 115Vac: 84.65% 230Vac: 84.39%
Thermal Performance	5V-2A @ 90Vac	AP3983R IC =86.4C @85Vac		AP3983R IC=88.0C @264Vac			Pass
EMI Scan Data	5V-2A @115Vac L & N		Under Limit line < -6db				Pass
	5V-2A @230Vac L & N		Under Limit line < -6db				Pass


DoE VI Eff \geq 0.0834xLn(Po)-0.0014xPo+0.609 <Vo<6V DoE VI Eff \geq 0.071xLn(Po)-0.0014xPo+0.67 Vo>6V


10W Cost-Effective Charge AP3983R + APR3415B EV1 Evaluation Board User Guide

2.1 Transformer Specification

AP3983R (90V_{AC} ~ 265V_{AC} one outputs 10W Transformer Spec.)

1) Core and Bobbin: EE16C, 2+2+2 pin

2) Transformer Parameters

1. Primary Inductance (Pin5-Pin6), all other windings are open Lp =1.05mH ±7% @1KHz

EE16C (Ae = 19mm^2)						
		TERMINAL NO.		WINDING		
NO Winding	NAME	START	FINISH	WIRE	TURNS	Layers
1	Np1	5	6	Φ 0.21mm	60Ts	3
2	Na	2	1	Ф 0.19mm x 2	11 Ts	1
3	Shield	1 (GND)	NC	Ф 0.19mm x 1	8T	1
4	Ns	3(+)	4	Ф 0.7W x 1	4 Ts	1
Primary Inducta	ance	Pin 5-6,all other windings open, measured at 1kHz, 0.4VRMS			•	
Primary Leakao Inductance	де	Pin 5-6, all o 10kHz, 0.4V	•	orted, measured at	80 uH (Max.)	

Chapter 3. Schematic

3.1 Evaluation Board Schematic

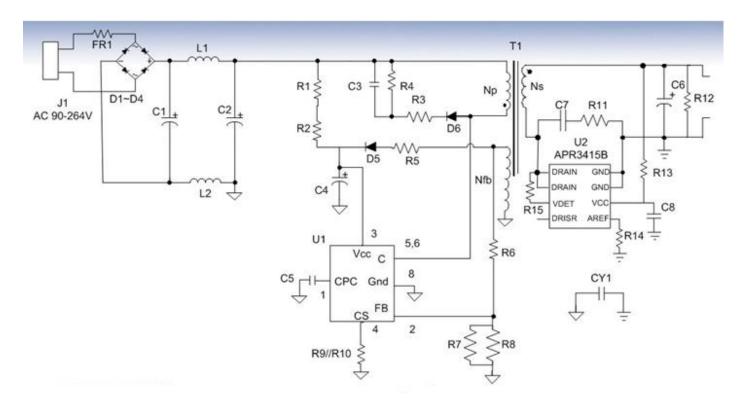
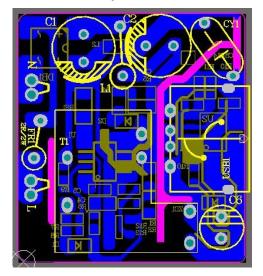


Figure 3: Evaluation Board Schematic

10W Cost-Effective Charge AP3983R + APR3415B EV1 Evaluation Board User Guide


3.2 Bill of Material (BOM)

ltem	QTY per board	REF. DES.	Description	MFG or Supplier	MFG P/N or Supplier P/N Digi key #
1	1	C1	10uf /400V 8 x 12mm	Wurth Electro	
2	1	C2	10uf /400V 8 x 12mm	Wurth Electro	
3	1	C3	1nf /250V 0805 X7R	Holy Stone	
4	1	C4	4.7uF/50V 1206 X7R	Holy Stone	
5	1	C5	10nf / 50V, 0603 X7R	Holy Stone	
6	1	C6	820uf /6.3V E-cap	Wurth Electro	
7	1	C7	1nf / 50V, 0603 X7R	Holy Stone	
8	1	C8	0.1uf / 50V, 0603 X7R	Holy Stone	
9	1	R1	1.5M ohm 0805	Yageo	
10	1	R2	3.3M ohm 1206	Yageo	
11	1	R3	82R hom 1206	Yageo	
12	1	R4	300kohm 0805	Yageo	
13	1	R5	1R ohm 0603	Yageo	
14	1	R6	56K ohm 0603	Yageo	
15	1	R7	27K ohm, 0603	Yageo	
16	1	R8	200K ohm, 0603	Yageo	
17	1	R9	3R ohm 0805	Yageo	
18	1	R10	2.7R ohm 0805	Yageo	
19	1	R11	20R ohm 0805	Yageo	
20	1	R12	3.2K ohm, 0603	Yageo	
21	1	R13	20R ohm 0603	Yageo	
22	1	R14	43K ohm 0603	Yageo	
23	1	R15	20R ohm 1206	Yageo	
24	1	BD1	ABS210	Diodes 2A-600V	
25	2	D5, D6	1N4007	Diodes 1A-600V	
26	1	FR1	3.3R hom	Fuse resistor	
27	1	L1	220uh	Inductor	
28	1	CY1	100pf/250Vac Y1	Holy Stone	
29	1	U1	AP3983RMTR-G1 sop-7	Diodes	
30	1	U2	AP3415BTM-G1 sop-8	Diodes	
31	1	T1	EE16 core PC40		

Chapter 4. The Evaluation Board (EVB) Connections

4.1 Evaluation Board PCB Layout



Figure 4: PCB Board Layout Top View

Figure 5: PCB Board Layout Bottom View

4.2 Quick Start Guide Before Connection

- 1. The evaluation board is preset at 5V/2A from output + & -
- 2. Ensure that the AC source is switched OFF or disconnected before doing connection.
- 3. Connect the AC line wires of power supply to "L and N" on the left side of the board.
- 4. Turn on the AC main switch.
- 5. Measure Red & Black wires to ensure correct output voltages at 5V respectively.

Chapter 5. Testing the Evaluation Board

5.1 Input & Output Characteristics

5.1.1 Input Standby Power

Input Voltage	115Vac/60Hz	230Vac/50Hz	Note
Pin (w)	27mW	46mW	At no loading

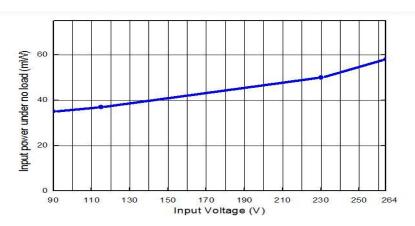


Figure 6: The Efficiency curve with at different AC input

5.1.2 Input Power Efficiency at Different Loading

AC input		Avg.				
AC Input	10%	25%	50%	75%	100%	Efficiency
90VAC/60Hz						
115VAC/60Hz	82.65%	84.97%	84.37%	84.61%	84.65%	84.65%
230VAC/50Hz	78.65%	82.21%	84.44%	85.22%	85.69%	84.39%
264VAC/50Hz						
Avg. Efficiency						

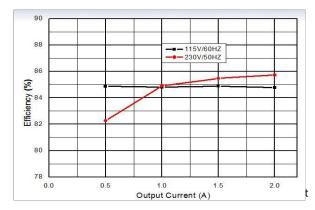


Figure 7: The efficiency curve with different loading

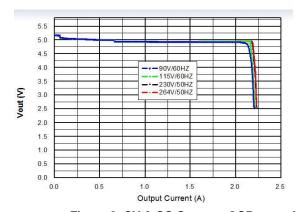


Figure 8: CV & CC Curve at OCP set points

5.1.3 OCP Current set point with at different AC line

AC input	90VAC	115VAC	230VAC	264VAC	Note
I _max	2.25A	2.26A	2.22A	2.22A	

5.1.4 PSU Output Characteristics:

Line Regulation (at full loading condition):

AC input Voltage	90VAC/60Hz	115VAC/60Hz	230VAC/50Hz	265VAC/50Hz	Note
5.00Vo	5.342V/2A	5.353V/2A	5.378V/2A	5.385V/2A	0.8%<1%

Cross Load Regulation (at nominal line AC input voltage):

AC input Voltage	115VAC/60Hz	230VAC/50Hz
5V Full Load	5.353V / 2A	5.378V/2A
5V 10% of FL	4.99V /0.2A	4.991V/0.2A
Note: cable compensation	7.2%	7.7%

Note: All output voltages are measured at output PCB END.

5.2 Key Performance Waveforms:

5.2.1 System start - up time

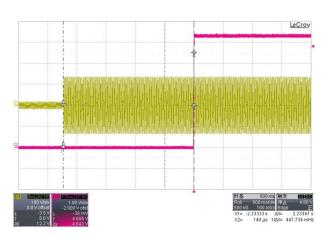


Figure 9: AP3983R turn on time 2.23sFL at 90Vac

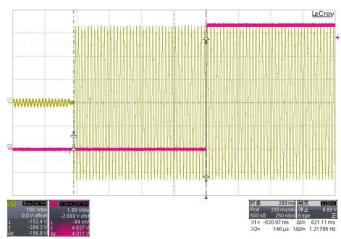
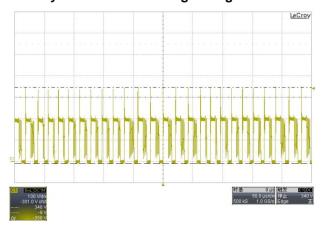



Figure 10: AP3983R turn on time 0.82s at FL, at 230Vac

5.2.2 System main switching Voltage Stress on AP3983R Pin 5 & 6

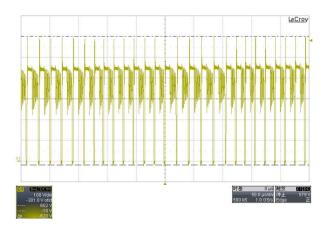
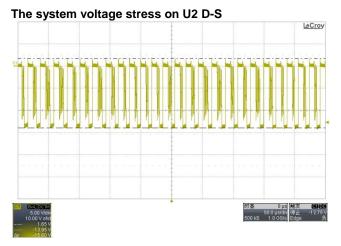



Figure 11: AP3983R Vds at FL at 90 Vac, Vds=356Vp-p

Figure 12: AP3983R Vds at FL at 264 Vac, Vds=620Vp-p

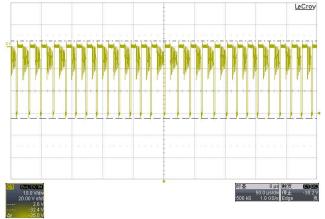


Figure 13: U2 D-S voltage stress at 90Vac FL $Vu2 \ d_S = 15.5Vp-p \ 5V/div$

Figure 14: U2 D-S voltage stress at 264Vac at FL $Vu2 d_S = 35Vp-p 10V/div$

5.2.3 System Output Ripple performance

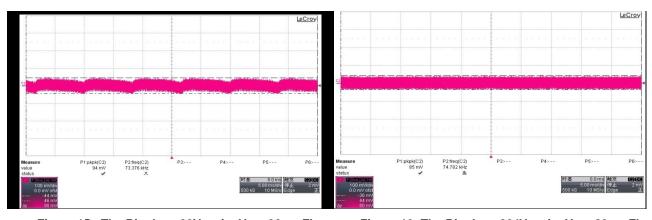


Figure 15: The Ripple at 90Vac_in Vpp=90mv FL

Figure 16: The Ripple at 264Vac_in Vpp=80mv FL

5.2.4 System Dynamic Response performance with Vout @ 0A-2A

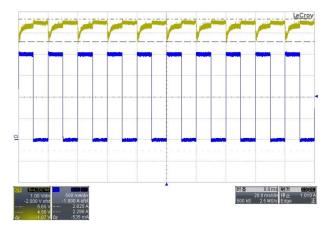


Figure 17: 90VAC; Load level: 0~2A; Vo: 4.58~5.65V Frequency: 10ms~10mS. Slew rate: 0.25A/us

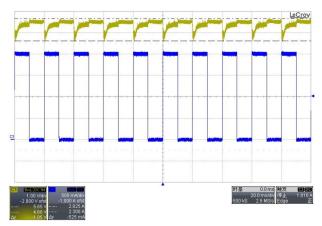


Figure 18: 264VAC; Load level:0~2A; Vo: 4.60~5.65V Frequency: 10ms~10mS. Slew rate: 0.25A/us

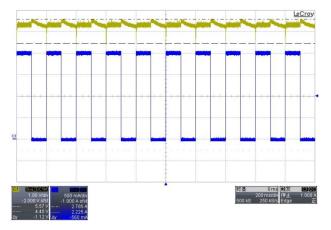


Figure 19: 90VAC; Load level: 0~2A; Vout: 4.45~5.57V Frequency: 100ms~100mS. Slew rate: 0.25A/us

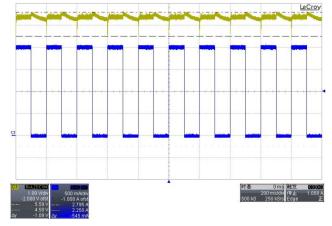


Figure 20: 264VAC; Load level: 0~2A; Vout: 4.50~5.59V Frequency: 100ms~100mS. Slew rate: 0.25A/us

5.3 Thermal Test data at room Temperature after running 1 hr

Figure21:

1#Ta 43.4℃ 6#U1 AP3983R 95℃ 5#U2 APR3415B 83.1℃ Figure22:

1#Ta 43.4℃ 6#U1 AP3983R 92.9℃ 5#U1 APR3415B 84.3℃

5.4 System EMI Scan

5.4.1 System EMI L - Line Scan Data @115Vac

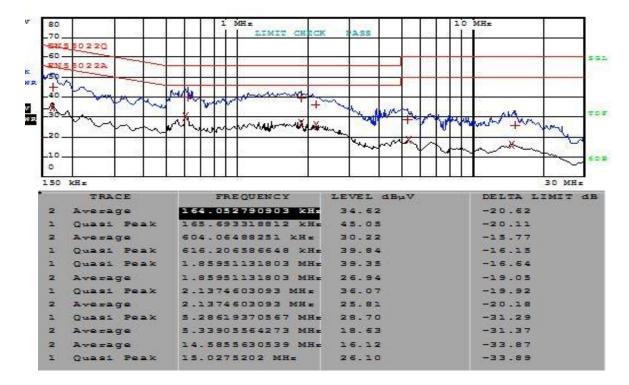


Figure 23: EMI Scan at 115Vac @ L- line

5.4.2 System EMI N - Line Scan Data @ 115Vac

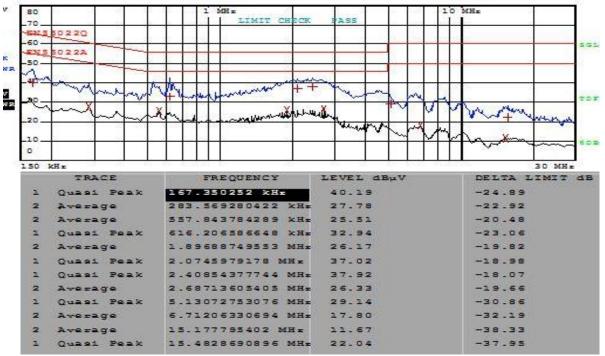


Figure 24: EMI Scan at 115Vac @N_ Line

5.4.3 System EMI L - Line Scan Data @ 230Vac

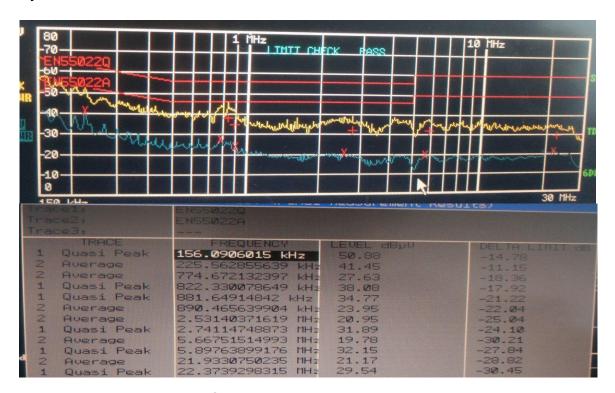
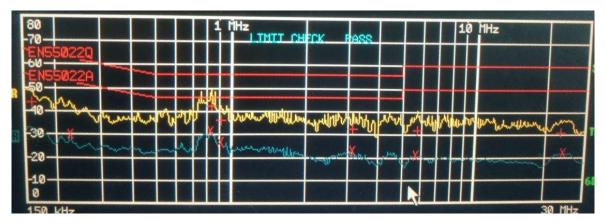



Figure 25: EMI Scan at 230Vac @ L_ line

5.4.4 System EMI N-Line Scan Data @230Vac

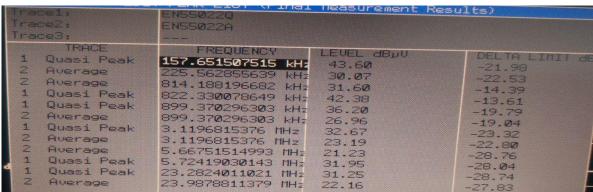


Figure 26: EMI Scan at 230Vac @ N_ line

10W Cost-Effective Charge AP3983R + APR3415B EV1 Evaluation Board User Guide

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com