

Table of Contents

Chapter 1	1 Summary	2
1.1	General Description	2
1.2 1.2.1 1.2.2	Key Features System Key Features AP3190T Key Features	2 2 2
1.3	Application	2
1.4	Main Power Specifications	2
1.5	Evaluation Board Picture	3
Chapter 2	2 Power Supply Specification	4
2.1	Specification and Test Results	4
Chapter 3	3 Schematics	5
3.1	Board Schematics	5
3.2	Bill of Material (BOM)	6
3.3	Transformer Design	7
3.4 3.4.1 3.4.2	Schematics Description AC Input Circuit & Differential Filter AP3190T PWM Controller	8 8
Chapter 4	4 The Evaluation Board (EVB) Layout	9
4.1	EVB PCB Layout	9
Chapter 5	5 Testing the Evaluation Board	. 10
5.1	Input & Output Characteristics	10
5.1.1	Input Standby Power	10
5.1.2	Output Full Load Efficiency at Different AC Line Input Voltage	10
5.1.3	Output Average Efficiency at Different Loading	10
5.2	Key Performance Waveforms	11
5.2.1	45W System Start-up Time	11
5.2.2	Q1/D4 MOSFET/Diode Voltage Stress at Full Load @264Vac	11
5.2.3	ect A7uE AL Cap and 10AMLCC to the cable output unit in parallel	12 12
	D_{V}	12 12
5.2.5	Thermal Testing	13
5.3	EMI (Conduction) Testing	14

Chapter 1 Summary

1.1 General Description

The 45W Evaluation Board (EVB) is composed of the controller AP3190T.

The AP3190T is a high performance offline PSR AC/DC power supply controller. It is specially designed for applications that require higher efficiency at light load and is cost effective.

Using the multi-mode control scheme, the AP3190T can also achieve high conversion efficiency with full load conditions. At heavy load and low line, the AP3190T will operate in QR mode to achieve high performance. When the load decreases, it will enter into fixed switching frequency operating mode. To optimize product performance, the fixed frequency is different in high (60kHz) and low line (80kHz).

1.2 Key Features

1.2.1 System Key Features

- Primary Side Control for Eliminating Opto-Coupler
- Low standby power (<65mW)
- Multiple QR/AM Mode to Improve Audio Noise and Efficiency

1.2.2 AP3190T Key Features

- Primary Side Control for Eliminating Opto-Coupler
- 65mW No-Load Input Power
- Adjustable Overtemperature Protection
- Multiple QR/AM Mode to Improve Audio Noise and Efficiency
- QR for Higher Efficiency and Better EMI
- Totally Lead-Free & Fully RoHS Compliant

1.3 Applications

- Power Tools
- Set-Top Box Power Supplies
- Network Adaptors

1.4 Main Power Specifications

Parameter	Value
Input Voltage	90V _{AC} to 264V _{AC}
Input standby power	< 100mW
Main Output (Vo / Io)	22.5V/2A
Efficiency	90.09%@230Vin; 90.04%@115Vin
Total Output Power	45W
Protections	OCP, OVP, UVP, OLP, OTP, SCP
Dimensions	PCB: 46 * 80 * 27 mm ³ , 1.81" * 3.15" * 1.06" inch ³
Power Density Index	0.453 W/CC; 7.446 W/CI
EMI	Min. margin 6.24Db@ >6dB

AP3190T 45W EVB User Guide

1.5 Evaluation Board Picture

Chapter 2 Power Supply Specification

2.1 Specification and Test Results

Parameter	Value	Test Summary
Input Voltage / Frequency	$90V_{AC}$ to $264V_{AC}$ / $50Hz$ or $60Hz$	Test Condition
Input Current	<2A _{RMS}	
Standby Power	< 100mW, load disconnected	PASS , 86.5mW@230V _{AC} /50Hz
22.5V/2A Efficiency	CoC Version 5, Tier-2 Efficiency >88.85%	PASS 90.04%@115VAC/60Hz 90.09%@230VAC/50Hz
Output Voltage Regulation Tolerance	+/- 5%	PASS
Conducted EMI	>6dB Margin; according to EN55032 Class B	Min. margin 6.24dB
Output Voltage Start time	2.84s	@90Vac , 22.5V/2A load

Chapter 3 Schematics

3.1 Board Schematics

Figure 1. 45W EVB Schematics

3.2 Bill of Material (BOM)

Item	Quantity	Reference	Description	Manufacturer Part Number	Manufacturer
1	1	BD1	Diode Bridge, 600V, 4A	KBP406G	SK
2	1	C1	MLCC, 1206, K, X7R	1nF/1KV	muRata
3	1	C2	MLCC, 0805, K, X7R	100nF/50V	muRata
4	1	C4	MLCC, 1206, K, X7R	1000pF/250V	muRata
5	1	CX1	X2, 224KMPX, 275V	224K, 275V	muRata
6	2	CY1, CY2	Capacitor, K, P10	1nF, K, Y1	JNC
7	1	D1	Fast Recovery Rectifiers, 1000V, 1A	RS1J	Diodes Incorporated (Diodes)
8	1	D2	Surface Mount Fast Recovery Rectifier, 1000V, 1A	F7	Diodes
9	1	D3	Surface Mount Fast Switching Diode, 100V, 2A	1N4148W	Diodes
10	1	D4	Super Barrier Rectifier, 150V, 20A	SBR30150CTFP	Diodes
11	1	EC1	Electrolytics Capacitors, D18XL20mm, P7.5	68µ/400V, M	AISHI
12	1	EC2	Electrolytics Capacitors, D5XL11mm, P2.0	6.8µ/50V	AISHI
13	2	EC3, EC4	Electrolytics Capacitors, D10XL16mm, P5.0	560µ/35V	AISHI
14	1	F1	Time lag Fuse, P5.0	T3.15A/300V	JDT fuse
15	1	LF1	DM Inductor, 9X12, $\Phi = 0.5$, 100µH	100µH	SANCI
16	1	LF2	Common Mode Inductor, T14X9X5, 7.5mH	7.5mH	SANCI
17	1	Q1	N-Channel MOSFET	STF13N65M2	CRHJ micro
18	4	R3, R4, R21, R22	Resistor, 1206, J	47R	fenghua
19	2	R5A, R5B	Resistor, 1206, J	560k	fenghua
20	1	R6	Resistor, 1206, J	1M	fenghua
21	1	R7	Resistor, 1206, J	2'M	fenghua
22	1	R8	Resistor, 1206, J	2R	fenghua
23	2	R10, R14	Resistor, 1206, J	0R	fenghua
24	2	R17, R18	Resistor, 1206, J	1.5R	fenghua
25	1	R19	Resistor, 1206, J	1.3R	fenghua
26	1	R11	Resistor, 0805, J	24.9K	fenghua
27	1	R12	Resistor, 0805, J	51K	fenghua
28	1	R13	Resistor, 0805, J	4.3K	fenghua
29	1	R15	Resistor, 0805, J	20R	fenghua
30	1	R16	Resistor, 0805, J	10K	fenghua
31	2	R1, R2	Resistor, 1206, J	2M	fenghua
32	NC	R20	Resistor, 0805, J		
33	1	R23	Resistor, 1206, J	27k	fenghua
34	NC	RV1			
35	1	U1		AP3190T	Diodes
36	1	T1	45/9/8, Lp=400μH	PQ2020	

3.3 Transformer Design

Np1	$6 \rightarrow X$	ф0.35*2	30T	2	1 L
Na1	3 → 1(GND)	ф0.15*2	8T		1 L
Shield1	$1 \rightarrow NC$	ф0.15*2	8T		1 L
Ns	14 →10	φ0.30*7(Triple Insulated Wire)	9T	1	1 L
Shield2	$1 \rightarrow NC$	ф0.15*2	32T	1	1 L
Np2	$X \rightarrow 4$	ф0.35*2	15T	1	2L

BOBBIN PIN Define:

Item	Test Condition	Rating
Primary Inductance	Pin 6-4,all other windings open, measured at 100kHz / 1V	400µH+-5%
Note	Bobbin: PQ2020 Core: PQ2020	

3.4 Schematics Description

3.4.1 AC Input Circuit & Differential Filter

The Fuse F1 protects against overcurrent conditions which occur when some main components fail. The LF1 is a differential mode chock for the Differential mode noise suppression. The LF2 is a common mode chock for the common mode noise suppression. The BD1 is a bridge rectifier which converts alternating current and voltage into direct current and voltage.

3.4.2 AP3190T PWM Controller

The AP3190T is a high performance offline PSR AC/DC power supply controller. It is specially designed for applications that require higher efficiency at light load and is cost effective.

Chapter 4 The Evaluation Board (EVB) Layout

4.1 EVB PCB Layout

Figure 2. PCB Layout Top View

Figure 3. PCB Layout Bottom View

Chapter 5 Testing the Evaluation Board

5.1 Input & Output Characteristics

5.1.1 Input Standby Power

Vin(Vac)	Pin(mW)
90V/60Hz	40.3
115/60Hz	48.3
230/50Hz	86.5

5.1.2 Output Full Load Efficiency at Different AC Line Input Voltage

Vin(Vac)	Pin(W)	Vout(V)	lout(A)	Eff(%)
90	50.74	22.43	2.00	88.43
115	49.78	22.44	2.00	90.20
230	49.56	22.49	2.00	90.78
264	49.72	22.48	2.00	90.46

Efficiency vs. AC Line At Board End

5.1.3 Output Average Efficiency at Different Loading

	Efficiency(%)					Eff_avg at four
AC input	10% load	25% load	50% load	75% load	100% load	conditions
115Vac	88.09	89.71	89.98	90.27	90.20	90.04
230Vac	84.65	89.13	90.05	90.40	90.78	90.09

Efficiency vs. different load vs. Line At Board End

5.2 Key Performance Waveforms

5.2.1 System Start-up Time

Figure 4. Turn on time is 2.84s at Full Load@ 90Vac

5.2.2 Q1/D4 MOSFET/Diode Voltage Stress at Full Load @264Vac

Primary side MOSFET: Q1

Secondary side diode: D4

Figure 5. Q1& D4 Vds Voltage stress

Component	Vout	Vds	Vds_Max_Spec	Ratio of voltage stress
Q1	22 5V	642V	710V	90.4%
D4	22.57	102V	150V	68%

5.2.3 System Output Ripple & Noise with the Cable

Connect $47\mu F$ AL Cap and 104MLCC to the cable output unit in parallel

Figure 6. 90Vac/60Hz@22.5V/2A, ΔV=106mV

Figure 7. 264Vac/50Hz@22.5V/2A, ΔV=150mV

5.2.4 Dynamic load ----10% Load~90% Load, T=20mS, Rate=100mA/µS

Figure 8. 90Vac/60Hz @ Vout=22.5V 20.6V~23.8V

Figure 9. 264Vac/50Hz @ Vout=22.5V 20.6V~24.2V

5.2.5 Thermal Testing

Test Condition: Vin=90Vac @22.5V-2A

	Primary MOSFET	Transformer(T1)	Diode Bridge	Super Barrier Rectifier(D4)	Ambient Temp.
90Vac/60Hz	89.7°	89.8°	83.2°	99.7°	25°
264Vac/50Hz	81.6°	7 9°	65.6°	100°	25°

Figure 10. Top Suface Mount side@90Vac

Figure 11. Bottom Suface Mount side@90Vac

Figure 12. Top Suface Mount side@264Vac

Figure 13. Bottom Suface Mount side@264Vac

- Note: 1) Component temperature can be further optimized with various system design and thermal management approaches by manufacturers.
 - 2) The data has been revised according to the Ta=25C.

5.3 EMI (Conduction) Testing

Output Condition : 22.5V/2A

	EDIT	PEAK LIST (Final	Measurement Resul	ts)				
Tra	cel:	EN550220						
Tra	ce2:	EN55022A	EN55022A					
Tra	ce3:							
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB				
1	Quasi Peak	150 kHz	56.04	-9.95				
2	Average	154.54515 kHz	42.62	-13.13				
2	Average	569.056444353 kHz	33.89	-12.10				
1	Quasi Peak	574.747008797 kHz	45.47	-10.52				
2	Average	881.64914842 kHz	32.02	-13.97				
1	Quasi Peak	1.26143607964 MHz	43.02	-12.97				
1	Quasi Peak	4.6912285087 MHz	47.75	-8.24				
2	Average	4.83337742374 MHz	38.80	-7.19				
1	Quasi Peak	5.39244619915 MHz	43.75	-16.24				
2	Average	11.7179860284 MHz	35.18	-14.81				
2	Average	12.4388782936 MHz	34.01	-15.99				
1	Quasi Peak	12.5632670765 MHz	40.77	-19.22				

Figure 14. 115Vac/60Hz L line

EDI	T PEAK LIST (Final	Measurement Resul	ts)		
Tracel: EN55022Q					
Trace2:	race2: EN55022A				
Trace3:					
TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB		
l Quasi Peak	167.350252 kHz	48.20	-16.89		
2 Average	181.216342567 kHz	38.91	-15.51		
l Quasi Peak	557.843784289 kHz	44.35	-11.64		
2 Average	557.843784289 kHz	39.75	- 6.24		
2 Average	1.05458240332 MHz	32.91	-13.08		
l Quasi Peak	1.47913300892 MHz	39.24	-16.75		
l Quasi Peak	4.93052830996 MHz	48.08	-7.91		
2 Average	4.93052830996 MHz	37.45	-8.54		
l Quasi Peak	5.23385515413 MHz	44.13	-15.86		
2 Average	9.41418552403 MHz	36.30	-13.69		
2 Average	22.3739298315 MHz	27.76	-22.23		
l Quasi Peak	22.5976691298 MHz	33.93	-26.06		

Figure 16. 230Vac/50Hz L line

	EDII	F PEAK LIST (Final	Measurement Resul	Lts)
Tra	cel:	EN55022Q		
Tra	ce2:	EN55022A		
Tra	ace3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB
1	Quasi Peak	151.5 kHz	52.67	-13.24
2	Average	159.22802259 kHz	40.83	-14.67
2	Average	574.747008797 kH:	35.80	-10.19
1	Quasi Peak	701.300575623 kH:	43.88	-12.11
1	Quasi Peak	1.26143607964 MH:	43.44	-12.55
2	Average	1.76926121483 MH:	33.00	-12.99
1	Quasi Peak	4.88171119798 MH:	48.69	-7.30
2	Average	4.93052830996 MH:	39.82	-6.17
1	Quasi Peak	5.18203480607 MH:	49.19	-10.80
2	Average	5.18203480607 MH	36.24	-13.75
1	Quasi Peak	12.4388782936 MH:	38.62	-21.37
2	Average	12.4388782936 MH:	31.80	-18.19

Figure 15. 115Vac/60Hz N line

EDIT PEAK LIST (Final Measurement Results)					
Tra	acel: EN55022Q				
Tr a	race2: EN55022A				
Tr a	ce3:				
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT dB	
1	Quasi Peak	167.350252 kHz	51.87	-13.21	
2	Average	181.216342567 kHz	39.00	-15.42	
1	Quasi Peak	610.105531335 kHz	44.38	-11.61	
2	Average	610.105531335 kHs	37.80	-8.19	
2	Average	1.03380296375 MHz	29.80	-16.19	
1	Quasi Peak	1.46448812765 MHs	37.93	-18.06	
2	Average	4.73814079378 MHs	34.22	-11.78	
1	Quasi Peak	4.93052830996 MHz	43.33	-12.66	
2	Average	9.50832737927 MH=	39.53	-10.46	
1	Quasi Peak	9.79643920719 MHz	45.79	-14.20	
1	Quasi Peak	22.8236458211 MHz	36.80	-23.19	
2	Average	23.5152251131 MHz	30.99	-19.00	

Figure 17. 230Vac/50Hz N line

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

Diodes' of 5 products provided subject to Standard Terms and Conditions Sale Diodes' are (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com