

Table of Contents

Chapter 1 Summary	2
1.1 General Description	2
1.2Key Features1.2.1System Key Features1.2.2AP3129 Key Features1.2.3APR349 Key Features	 2 2 2
1.3 Main Power Specifications	2
1.4 Evaluation Board Pictures	3
Chapter 2 Power Supply Specification	4
2.1 Specification and Test Results	4
Chapter 3 Schematics	5
3.1 Board Schematics	5
3.2 Bill of Material (BOM)	6
3.3 Transformer Design	7
3.4 Schematics Description3.4.1AC Input Circuit & Differential Filter3.4.2AP3129 PWM Controller3.4.3APR349 Synchronous Rectification (SR) MOSFET Driver	 9 9 9
Chapter 4 The Evaluation Board (EVB) Connections	10
4.1 EVB PCB Layout	10
Chapter 5 Testing the Evaluation Board	11
 5.1 Input & Output Characteristics	 11 11 11 11
 5.2 Key Performance Waveforms 5.2.1 30W System Start-up Time 5.2.2 Q1 / Q2 MOSFET Voltage Stress at Full Load @264Vac 5.2.3 System Output Ripple & Noise with the Cable Connect 47μF AL Cap and 104MLCC to the cable output unit in parallel 5.2.4 Dynamic load10% Load~100% Load, T=10mS, Rate=100mA/uS (With 0.15ohm cable) 5.2.5 Output Voltage Rising Time from Low to High 5.2.6 Output Voltage Falling Time from High to Low 5.2.7 Thermal Testing 	13 13 13 14 14 14 15 15 15
J.J EINI TESTINY	10

Chapter 1 Summary

1.1 General Description

The 30W Evaluation Board (EVB) is composed of two main controllers: AP3129 and APR349.

The AP3129 is a highly integrated multi-mode peak current controller, specially designed for offline power supplies that require high efficiency at light load for IoT application. The controller architecture is designed to authorize a transient peak power excursion for peak load. This means the frequency can be increased from 65kHz to 130kHz until the peak event disappears.

The APR349, a Secondary Side Synchronous Rectification (SR) Controller, is adopted for efficiency optimization. The AP3129 30W EVB exemplifies HPD charger design with system BOM optimization to meet market trend.

1.2 Key Features

1.2.1 System Key Features

- Multiple Operation Modes:
- Cost-Effective Implementation for HPD Chargers
- Low standby power (<65mW)
- Low overall system BOM cost
- Peak load (2lout w/ 60ms)

1.2.2 AP3129 Key Features

- Multiple Operation Modes:
 - 130kHz Maximum Frequency for Peak Load
 - 65kHz Fixed-Frequency CCM Operation for Full Load
 - Valley Switching Operation in Green Mode
 - Bust Mode Control for Light Load
- High Efficiency at Light Load
- Peak load
- Proprietary Audible Noise Elimination Technology
- Soft Start During Startup Process
- Internal Slope Compensation
- Frequency Dithering for Reducing EMI
- VCC Maintain Mode
- Low No-Load Consumption
- Comprehensive System Protection Features
 - Secondary Winding Short Protection
 - VCC Overvoltage Protection (VOVP)
 - Line Overvoltage Protection (LOVP)
 - Over-Load Protection (OLP)
 - Cycle-by-Cycle Over-Current Protection
 - Pin-Fault Protection
 - Brown In/Out Protection (BNI/BNO)

- Secondary Side OVP (SOVP) and UVP (SUVP)
- Internal OTP

1.2.3 APR349 Key Features

- SR Works with CCM / DCM / QR operation modes
- Eliminate Resonant Ringing Interference
- Fewest External Components used

1.3 Main Power Specifications

Parameter	Value			
Input Voltage	90V _{AC} to 264V _{AC}			
Input standby power	< 65mW			
Main Output (Vo / Io)	18V/1.67A			
Efficiency	92.09%@230Vin; 90.78%@115Vin			
Total Output Power	30W			
Protections	OCP, OVP, UVP, OLP, OTP, SCP			
Dimensions	PCB: 38 * 66.5 * 25 mm ³ , 1.496" * 2.618" * 0.984" inch ³			
Power Density Index	0.475 W/CC; 7.784 W/CI			
EMI	Min. margin 7.67Db@ >6dB with			

1.4 Evaluation Board Pictures

25mm

Chapter 2 Power Supply Specification

2.1 Specification and Test Results

Parameter	Value	Test Summary
Input Voltage / Frequency	$90V_{AC}$ to $264V_{AC}$ / $50Hz$ or $60Hz$	Test Condition
Input Current	<2A _{RMS}	
Standby Power	< 65mW, load disconnected	PASS, 49.1 mW@230V _{AC} /50Hz
18V/1.67A Average Efficiency		90.78@115VAC/60Hz 92.09 @230VAC/50Hz
Peak load	2lout w/ 60ms	Pass
Output Voltage Regulation Tolerance	+/- 5%	PASS
Ripple	<100mV@cable end	PASS
Dynamic	+/- 10%@0.15ohm cable	PASS
Thermal	<90°C@Ta=25°C , open frame	PASS
Output Voltage Start time	2.41s	90Vac , Full Load
Conducted EMI	>6dB Margin; according to EN55032 Class B	Min. margin 7.67Db@ 2nd grounding

Chapter 3 Schematics

3.1 Board Schematics

Figure 1. 30W EVB Schematics

3.2 Bill of Material (BOM)

Item	Quantity	Reference	Description	Manufacturer Part Number	Manufacturer
1	1	BD1	Diode Bridge, 1000V, 3A, MSBL	Bridge, 1000V, 3A, MSBL MSB30M	
2	1	C1	MLCC, 1206, J, NP0	47pF1000V	muRata
3	1	C2	MLCC, 1206, K, X7R	1nF/1000V	muRata
4	1	C3	MLCC, 0805, K, X7R	1nF/200V	muRata
5	1	C4	MLCC, 0805, K, X7R	NC	
6	1	C6	MLCC, 0805, K, X7R	3.3µF/25V	muRata
7	1	C7	MLCC, 0603, K, X7R	100nF/50V	muRata
8	1	C8	MLCC, 0603, K, X7R	1nF/50V	muRata
9	1	C9	MLCC, 0603, J, NP0	220pF/50V	muRata
10	2	CE1, CE2	Electrolytic Solid Capacitor, M, P3.5	560UF/25V	AISHI
11	2	CE3, CE4	Electrolytic Capacitor, M, P7.5	56UF/400V	AISHI
12	1	CE5	Electrolytic Capacitor, M, P2.0	4.7µF/50V	AISHI
13	1	CX1	Capacitor, K, P7.5	150nF, K, 275VAC	SRD
14	1	CY1	Capacitor, K, P10	471K, Y1	JNC
15	1	D1	SMA	RS1J	Diodes
16	1	D2	SOD123F	S1MWF	Diodes
17	1	D3	SOD123	1N4148W	Diodes
18	1	F1	Time lag Fuse, P5.0	T3.15A/300V	JDTfuse
19	2	L1, L3	T9X5X3, Ni-Zn, 20uH	common choke	SANCI
20	1	L2	UU9.8, >10mH	CM Inductor	SANCI
21	1	NTC1	2.5Ω_M_φ5mm	NTC	ТDК
22	1	Q1	N-Channel Power MOSFET	DMT10H010LPS	Diodes
23	1	Q2	N-Channel MOSFET	IPD70R600P7S	Infineon
24	2	R1, R2	Resistor, 1206, J	2.4M	fenghua
25	2	R3, R4	Resistor, 1206, J	1.2M	fenghua
26	1	R5	Resistor, 0805, J	18R	fenghua
27	1	R6	Resistor, 1206, J	33R	fenghua
28	1	R7	Resistor, 1206, J	2.2R	fenghua
29	1	R8	Resistor, 0603, J	зк	fenghua
30	1	R9	Resistor, 0603, J	15K	fenghua
31	1	R10	Resistor, 0805, J	130K	fenghua
32	2	R11, R19	Resistor, 0603, J	24K	fenghua
33	1	R12	Resistor, 0603, J	150K	fenghua
34	1	R13	Resistor, 0805, J	0R	fenghua
35	1	R14	Resistor, 0805, J	10R	fenghua
36	1	R15	Resistor, 0603, J	10K	fenghua
37	1	R16	Resistor, 0603, J	22K	fenghua
38	1	R17	Resistor, 0805, J	20К	fenghua
39	1	R18	Resistor, 0805, J	1K	fenghua

AP3129 30W EVB User Guide

40	1	R20	Resistor, 1206, F	0.2R	fenghua
41	1	R21	Resistor, 1206, F	NC	
42	1	T1	590µH, ATQ21.5-17.2	Trans. 590µH	BZD
43	1	U1	IC controller	APR349	Diodes
44	1	U2	IC controller	AP3129	Diodes
45	1	U3	Optical coupler	EL1019-V	EL
46	1	U4	Adjustable Precision Shunt Regulators	AZ431BN	Diodes

3.3 Transformer Design

BOBBIN PIN Define:

Item Test Condition		Rating
Primary Inductance	Pin 1-2,all other windings open, measured at 100kHz / 1V	590µH+-5%
Note	Bobbin: RC872 Core: RC872	

3.4 Schematics Description

3.4.1 AC Input Circuit & Differential Filter

The Fuse F1 protects against overcurrent conditions which occur when some main components fail. The L1, L2 and L3 are common mode chocks for the common mode noise suppression. The BD1 is a bridge rectifier, which converts alternating current and voltage into direct current and voltage.

3.4.2 AP3129 PWM Controller

The AP3129 is a highly integrated multi-mode peak current controller, specially designed for offline power supplies that require high efficiency at light load for IoT application. Meanwhile, the AP3129 features proprietary audible noise elimination technology to ease the acoustic noises from electronic and magnetic components.

3.4.3 APR349 Synchronous Rectification (SR) MOSFET Driver

As a high performance solution, the APR349 is a secondary side SR controller to effectively reduce the secondary side rectifier power dissipation which works in QR/DCM/CCM operation.

Chapter 4 The Evaluation Board (EVB) Connections

4.1 EVB PCB Layout

Figure 2. PCB Layout Top View

Figure 3. PCB Layout Bottom View

Chapter 5 Testing the Evaluation Board

5.1 Input & Output Characteristics

5.1.1 Input Standby Power

Vin(Vac)	F(Hz)	Pin(mW)
90	60	26.8
115	60	28.6
230	50	49.1
264	50	62.0

5.1.2 Output Full Load Efficiency & 10% load at Different AC Line Input Voltage

Vin	Pin	Vout	lout	Eff.	Load
90.20	3.34	18.07	0.168	91.11	
115.25	3.32	18.07	0.168	91.65	100/ Jacob
230.43	3.39	18.07	0.168	89.67	10% load
264.52	3.42	18.07	0.168	88.79	
90.10	33.66	18.00	1.671	89.36	
115.18	33.13	18.00	1.671	90.78	Full lead
230.40	32.65	18.00	1.671	92.09	Full load
264.48	32.75	18.00	1.671	91.83	

Efficiency vs. AC Line at Board End

5.1.3 Peak load passed 2lout w/ 60ms

Figure 4. Max. Pout is about 62W @ 90Vac

Figure 5. Max. Pout is about 62W @ 115Vac

Figure 6. Max. Pout is about 62W @ 230Vac

5.2 Key Performance Waveforms

5.2.1 30W System Start-up Time

Figure 7. Turn on time is 2.414s at Full Load@ 90Vac

5.2.2 Q1 / Q2 MOSFET Voltage Stress at Full Load @264Vac

Primary side MOSFET: Q1 and Secondary side SR MOSFET- Q2

Figure 8. Q1 & Q2 Vds Voltage Stress

Component	Vout	Vds	Vds_Max_Spec	Ratio of voltage stress
Q1	18\/	94V	100V	94%
Q2	104	640V	700V	91%

5.2.3 System Output Ripple & Noise with the Cable

Connect 47µF AL Cap and 104MLCC to the cable output unit in parallel

Figure 9. 90Vac/60Hz@18V/1.67A ΔV=18.2mV

Figure 10. 264Vac/50Hz@18V/1.67A ΔV=16.6mV

5.2.4 Dynamic load ----10% Load~100% Load, T=10mS, Rate=100mA/µS (With 0.15ohm cable)

Figure 11. 90Vac/60Hz @ Vout=18V

Figure 12. 264Vac/50Hz @ Vout=18V

5.2.5 Output Voltage Rising Time from Low to High

Figure 14. 0V→18V Rise Time = 28.57ms @264Vac Full load

5.2.6 Output Voltage Falling Time from High to Low

Figure 15. 18V→0V Fall Time = 10.98ms@90Vac Full load

Figure 16. 18V→0V Fall Time = 12.51ms@264Vac Full load

5.2.7 Thermal Testing

Output Condition : 20V/3.25A

Main Voltage	Temperature (°C)					
Main Voltage	Ambient Temp	AP3129	Q2	BD	Q1	
90Vac/60Hz	25	56.6	62.2	78.2	55.4	
264Vac/50Hz	25	55.6	77.7	71.5	64.7	

Test Condition: Vin=90Vac @18V-1.67A Full load Open Frame

Figure 17. Vin=90Vac

Test Condition: Vin=264Vac @ 18V-1.67A Full load Open Frame

Figure 18. Vin=264Vac

BD1: Bridge Rectifier

- Q2: Primary Side High Voltage GaN FET
- Q1: Secondary Side Sync-Rectifier

Note:

- 1) Component temperature can be further optimized with various system designs and thermal management approaches by manufacturers.
 - 2) The data has been revised according to the Ta=25C.

5.3 EMI Testing

RE test result Output Condition :18V/1.67A

Audix Technology (Shanghai) Co., Ltd. 3F #34Bldg. No.680 GuiPing Rd.,CaoHeJing Hi-Tech Park,Shanghai 200233, China Tel:+86-21-64955500 Fax:+86-21-64955491 audixaci@audix.com

AUDIX

Figure 19. RE Vertical test result@230V/50Hz

Figure 20. RE Horizontal test result@230V/50Hz

Conduction test result

8

dBµV

1 PK CLRWR 2 AV CLRWR

М

AP3129 30W EVB User Guide

EDI	IT PEAK LIST (Final	Measurement Resu	ita)
Tracel:	EN55022Q		
Trace2:	EN55022A		
Trace3:			
TRACE	FREQUENCY	LEVEL dBpV	DELTA LIMIT dB
1 Quasi Peak	150 kHz	54.69	-11.30
2 Average	157.651507515 kHz	42.85	-12.72
2 Average	471.030732902 kHz	28.29	-18.20
1 Quasi Peak	480.498450633 kHz	35.74	-20.58
2 Average	2.01358429993 MHz	29.05	-16.94
1 Quasi Peak	2.11629733595 MHz	39.25	-16.75
2 Average	4.6912285087 MHz	33.31	-12.69
1 Quasi Peak	4.88171119798 MHz	43.18	-12.81
2 Average	7.34088478812 MHz	35.83	-14.16
1 Quasi Peak	7.41429363601 MHz	43.93	-16.06
1 Quasi Peak	12.4388782936 MHz	26.59	-33.40
2 Average	12.4388782936 MHz	18.64	-31.35

	1013	i india india (sinai	Participation of Parameter 1	contractory
Tra	ncel:	EN55022Q		
Tr:	ace2:	EN55022A		
Tra	ace3:			
	TRACE	FREQUENCY	LEVEL dBµV	DELTA LIMIT de
2	Average	156.0906015 kHz	41.68	-13.98
1	Quasi Peak	159.22802259 kHz	54.65	-10.85
2	Average	475.741040231 kHz	25.03	-21.38
1	Quasi Peak	480.498450633 kHz	31.88	-24.44
2	Average	1.95436508353 MHz	29.22	-16.77
1	Quasi Peak	2.11629733595 MHz	38.92	-17.07
2	Average	4.78552220172 MHz	32.90	-13.09
1	Quasi Peak	4.88171119798 MHz	42.89	-13.10
2	Average	7.48843657237 MHz	37.96	-12.03
1	Quasi Peak	7.71534368894 MHz	47.29	-12.70
1	Quasi Peak	23.5152251131 MHz	28.48	-31.51
2	Average	23.5152251131 MHz	22.21	-27.78

Figure 21. 115Vac/60Hz L line

Figure 22. 115Vac/60Hz N line

Tracel: Tracel:		ENSSOZZQ			
		EN55022A			
Tra	ce3:				
	TRACE	FREQUENCY	LEVEL dBpV	DELTA LIMIT dB	
1	Quasi Peak	151.5 kHz	51.71	-14.20	
2	Average	196.231331718 kHz	37.12	-16.64	
2	Average	439.3388689 kHz	31.35	-15.72	
1	Quani Peak	495.058034186 kHz	37.13	-18.94	
1	Quasi Peak	2.03372014292 MHz	38.01	-17.98	
2	Average	2.11629733595 MHz	30.17	-15.82	
2	Average	4.78552220172 MHz	33.55	-12.44	
1	Quasi Peak	4.93052830996 MHz	43.49	-12.50	
2	Average	6.98459999257 MHz	37.18	-12.81	
1	Quasi Peak	9.13731572038 MHz	45.75	-14.24	
1	Quasi Peak	12.4388782936 MHz	30.72	-29.27	
2	Average	12.4388782936 MHz	22.87	-27.12	

Figure 23. 230Vac/50Hz L line

ILEM 9.HIZ MT 1.B ALL 10 OB AUTO PREMO OFF 10 00220 00 10 0220 00 10 0220 00 10 0220 00 10 0220 00 10

		EDI	T PEAK LIST (Final	Measurement Re	aulta)		
Tracel:			EN550220				
Trace2:			EN55022A				
Trace3:							
	TRACE		FREQUENCY	LEVEL dBpV	DELTA LIMIT dB		
1	Quasi P	nak	160.820302816 kHz	50.91	-14.50		
2	Average		198.193645035 kHz	35.69	-17.99		
2	Average		439.3388689 kHz	26.43	-20,64		
1	Quasi P	aak	520.310969312 kHz	31.55	-24.44		
2	Average		1.91585637048 MHz	28.94	-17.05		
1	Quasi P	nak	2.01358429993 MHz	36.58	-19.41		
2	Average		4.73814079378 MHz	32.84	-13.15		
1	Quasi P	aak	4.97983359306 MHz	43.99	-12.00		
2	Average		7.94912631806 MHz	39.56	-10,43		
1	Quant P	nak	8.78078080862 MHz	49.17	-10.82		
1	Quani P	aak	22.3739298315 MHz	28.23	-31.76		
2	Average		22.3739298315 MHz	21.76	-28.23		

Figure 24. 230Vac/50Hz N line

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

provided Conditions Sale 5. Diodes' products are subject to Diodes' Standard Terms and of (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com