

AL9910EV7

Triac Dimmable 120V_{AC} Evaluation Board

- Modification Guide -

Date: August 3, 2012

This document contains Diodes confidential and proprietary information (For Internal Use Only)

1. Standard Evaluation Board Schematic

Figure 1: Standard Evaluation Board Schematic

2. Modification Summary

Based on the 8 LEDs configuration, we modified the following components to achieve higher efficiency:

- Inductor (L2) Coilcraft (MSS1278T-105KLB) with lower conduction and switching losses
- MOSFET (Q1) Alpha Omega (AOD4S60) with a low R_{DS(on)} (0.9Ω) and low Qg (6nc)
- Freewheeling Diode (D2) Diodes (ES1G-13-F) with a faster recovery time of 25nSec
- 4. R_{OSC} resistor Increase R32 to 440K Ω to lower the switching frequency
- 5. Gate drive resistor Decrease R6 to 4.73Ω to turn on the MOSFET faster

We concluded the overall efficiency can be improved higher using the standard EVB to around 87%. In addition, we connected the $120V_{AC}$ Lutron dimmer (P/N LG-603PG) at full brightness setting, the efficiency maintained at 80%.

3. Introduction

This report shows how to select components and change applications circuitry from the standard EVB to meet certain customer's requirement.

Customers have different requirement for their customized LED applications. We can modify our standard evaluation board to fulfill their needs and shorten the design-in time. Customers usually provide a set of test conditions such as input/output voltage, number of output LEDs, output LED current, output ripple current, power factor, and efficiency.

4. Modifications from Standard EVB

Here is a list of parameters that allows user to change the applications circuitry using our standard EVB to meet their customized LEDs requirements:

1. How to adjust output LED current (I_{LED})

User can change the R_{sense} resistor (R7) and Power Inductor (L2) to a different value to decrease or increase the output LED current.

<u>Table below shows typical values for R7 and L2 selection to meet the ILED</u> requirement:

Rsense (Ω)	Power Inductor (mH)	lled (mA)
1.91	1.0	260
1.62	1.0	425
1.50	1.0	500
1.20	1.0	700

2. How to improve efficiency (Eff)

Efficiency varies with several parameters:

• I_{LED}

LED current is direct proportional to the intensity of the light. The higher I_{LED} will increase the efficiency based on the power equation, Pout = Vout * I_{LED} . However, user needs to know the current limit of the types of LEDs and not to exceed this limit.

• Numbers of LEDs

Typical LED voltage is 3.3V, the numbers of LEDs determine the Vout and based on the power equation, Pout = Vout * I_{LED} . When the numbers of LEDs increase, Vout will increase accordingly and affects the efficiency.

• MOSFET selection

Power MOSFET is acting as a switch to regulate the voltage across the output of the LED. In conjunction with the current feedback loop circuitry, when the I_{LED} exceeded the limit, MOSFET will turn off to protect the LEDs.

Two main parameters for MOSFETs selection to enhance the efficiency are: Low $R_{DS(on)}$ will reduce the conduction loss and Low Qg will reduce the switching loss.

• MOSFET Gate Drive

Improve the gate drive by lowering R6 from 22Ω to 4.7Ω so the MOSFET will turn on faster and improve the efficiency.

• Switching Inductor

With proper selection of the right inductance value, inductors can delivery system running under continue conduction mode to provide maximum efficiency performance.

The following parameters are needed to be defined or calculate for inductance operating in continue conduction mode:

- Maximum input voltage
- Minimum input voltage
- Maximum switching frequency
- Maximum LED ripple current
- Duty cycle

Select a larger value inductance with +/-20% tolerance. Unfortunately, larger inductance requires more winding and tends to be higher DCR and cost.

So the final inductor selection depends on four main design criteria: efficiency, electromagnetic interference (EMI), dimension, and cost. In handheld battery powered applications: high efficiency, low EMI, and smallest spacing are required. For retrofit LED lighting applications, the lowest cost solution is often employed for AC utility supply.

Recommend to check each inductor "roll off" and frequency response beside parameters like Irms, Isat, and DCR. Refer to the data sheet for frequency response curves. For EV7 application, use the MSS1260T series high temperature power inductor from Coilcraft.

Total inductor loss comes from two factors: inductor core loss which is switching frequency related and DCR loss which is conduction resistance loss.

• Free-Wheeling diode

Freewheeling diode is used to eliminate flyback, the sudden voltage spike across an inductive load and provide continuously current into the inductor when power MOSFET is suddenly switched OFF.

Here are the selection criteria for the diode:

- Peak forward current capacity (I_{PEAK}), reverse breakdown voltage (V_R), and average rectified output current (I_O)
- Lower forward voltage drop (V_F) and faster reverse recovery time (t_{rr}) are recommended for better power efficiency.

3. How to reduce output ripple

User can add a Electrolytic Capacitor with proper voltage rating across LED+ (X3) and LED- (X4) to suppress the amplitude of the output waveform. Install the Electrolytic Capacitor carefully to make sure it will able to fit into the E27/A19 light bulbs housing.

Typical Electrolytic Capacitor values shown:

Electrolytic Capacitor (µF)	Output Ripple Suppressed	
330 μF 50V	7%	
470 μF 50V	26%	
680 μF 50V	46%	
1000 μF 50V	60%	

4. How to adjust operating switching frequency

User can set AL9910 either on constant frequency or constant off time modes.

Constant switching frequency

Connect a resistor between Rosc pin and Ground pin.

Use tosc = $(Rosc + 22)/25 \mu s$

Switching frequency will impact efficiency. Be careful to have Duty cycle > 0.5 and min Ton >Tblank time (smaller number of LED and in low power mode < 3W) when use at constant frequency mode.

Constant Off time (Variable Frequency)

Connect Rosc between Rosc pin and Gate of external MOSFET. The switching frequency varies as either Vin or Vout changes. More suitable to be used for Triac

Dimming application circuitry that Vin and Vout are changing according to dimmer positions. Help to remove instability issue from Duty cycle > 50%.

5. How to reduce harmonic distortion

Harmonic is a measurement of amplitude and frequency of the input source. Harmonic distortion also depends on the numbers of LEDs and I_{LED} .

User can add capacitors both at input and output on the EVBs. However, adding components will impact BOM cost. The most economical way is to add just an output capacitor across LED+ (X3) and LED- (X4) and it will reduce the harmonic.

For the EV7 application, add a 220 μ F/50V 20% radial capacitor will be sufficient to reduce the harmonic.

6. How to adjust holding current and dimmer compatibility

The AL9910 triac dimming evaluation board includes a bleeder circuit to ensure proper triac operation by allowing current flow while the line voltage is low to enable proper firing of the triac since the existing triac dimmer requires a small amount of a few milliamps of current to hold them on throughout the AC line cycle. An external resistor (R17) needs to be placed on the source of Q2 to GND to perform this function. The R17 resistor can be adjusted independently. As the holding resistor R17 is increased, the overall efficiency will also increase.

7. How to improve triac dimming range

The AL9910EV7 evaluation board has been optimized with the dimming circuit for triac dimming controls. It is mainly used for both forward phase and reverse phase dimmers using a 120V_{AC} input. In practice, a triac or electronic dimmer can be inserted in series to the hot line voltage after the AC power supply or AC wall power supply, which is then connected directly to the input of the LED driver board. As the AC power supply can be set at any voltage, normally at 120V_{AC} for the AL9910EV7 evaluation board, the dimmer can be adjusted from maximum dimming range that provides full brightness of LEDs to minimum dimming range that provides the lowest brightness before it completely turns off at a cut-off threshold.

For design flexibility for different condition requirements, the value of resistance in the dimming circuit can be selected to provide wide maximum and minimum range of LED dimming.

Table below shows maximum and minimum LED dimming ranges:

Resistor	Comment
R25 (Refer to figure 2 –	Lower R25 (20 K Ω) to an acceptable value if needed
Standard EVB's	(based on the type of dimmers) to achieve lower LED
schematic)	dimming range
R2 (Refer to figure 2 –	Lower R2 (10 K Ω) to an acceptable value if needed (based
Standard EVB's	on the type of dimmers) to achieve higher LED dimming
schematic)	range

Here is a list of Triac dimmers which were tested in our lab:

Item #	Dimmer Type	Model Number	Voltage (VAC Input)
1		LG-603PG	120
2		DV-603PG	120
3 Lutron		DV-600P	120
4		CTCL-153PD	
5		TGCL-153P	120
6		D106P	120
7	Copper	SLC03P	120
8		NOM426	120

8. How to adjust Power Factor Correction (PFC)

EV7 power factor correction circuitry contains R42, R43, R44 and Q6. It works as a controlled voltage divider added into the current feedback loop to have the input current waveform matched with the voltage waveform will improve the power factor. But adjust R42 and R44 to have a high power factor may hurt LED current line rejection tolerance. Disable this circuitry to replace with valley-fill circuitry which is a passive power factor correction. It can maintain a stable LED current over line voltage variation and good power factor at a higher BOM cost trade off.

9. How to improve Electromagnetic Interference (EMI)

Standard EV7 did not come with line EMI filter.

EMI results may relate to customer's PCB layout, power source, loading conditions, LED lamp fixtures designs, components selection, switching frequency, and EMI filter design.

User may consider using:

- Common mode filter (ELF-11090E)
- Differential mode inductor (MSS1260-105KL-KLB)
- Choke RF Shielded inductor (RL875S)

for EMI enhancement. However, it will need a joined collaboration with sharing

product information between customers and Diodes application supporting team to develop an optimize EMI solution.

5. Standard Evaluation Board Connections

Board Dimension (components included): WxLxH (in mm) = 20mm x 33mm x 19mm

Figure 2: Top-View Board

Recommended Test conditions:

Input Voltage: 1<u>20VAC, 60Hz</u> LED Output Voltage: <u>24VDC</u> LED Output Current: <u>300mA</u> Efficiency: <u>87%</u>. Note: Use the MOSFET (Q1 - AOD4S60) and lower the gate drive resistor R6 to 4.7Ω.

Connection Instructions:

AC+ (X1) Input: Red – Hot AC- (X2) Input: Black - Neutral DC LED+ (X3) Output: LED+ (Red) DC LED- (X4) Output: LED- (Black)

6. <u>Standard AL9910A Pin Assignment and Description</u>

AL9910A Pin Assignment

AL9910A Pin Description

Pin Name	Pin Number	Description			
V _{IN}	1	Input voltage			
CS	2	Senses LED string current			
GND	3	Device ground			
Gate	4	Drives the gate of the external MOSFET			
PWM_D	5	Low Frequency PWM Dimming pin, also Enable input. Internal $100k\Omega$ pull-down to GND			
V _{DD}	V _{DD} 6 Internally regulated supply voltage. 7.5V nominal for AL9910. Can supply up to for external circuitry. A sufficient storage capacitor is used to provide storage where the rectified AC input is near the zero crossings				
LD	7	Linear Dimming by changing the current limit threshold at current sense comparator			
R _{osc} 8 Oscillator control. A resistor connected between this pin and ground sets the frequency.		Oscillator control. A resistor connected between this pin and ground sets the PWM frequency.			

7. Standard Evaluation Board BOM List

Item	Comment	Description	Size	Qty	Manufacturer	Part Number		
C1	C1206 - 0.047u 630V	Multilayer Ceramic Capacitors (1206) 0.047µF 630V 10%	C1206	1	Murata	C3216X7T2J473M/SOFT		
C4,	C0603 - 4.7u 16V	Multilayer Ceramic Capacitors (0603) 4.7µF 16V 10%	C0603	1	ТDК	C1608X5R1C475M		
C6, C41	C0603 - 1u 16V	Multilayer Ceramic Capacitors (0603) 1.0µF 16V 10%	C0603	2	ток	C1608X7R1C105K		
C5	C0402 - 220p 50V	Multilayer Ceramic Capacitors (0402) 220pF 50V 5%	C0402	1	Murata	GRM155R71H221JA01J		
C7, C8, C12	C0603 - 0.1u 16V	Multilayer Ceramic Capacitors (0603) 0.1µF 16V 10%	C0603	3	Murata	GCM188R71C104KA37D		
C9, C13, C14	C0805 – 4.7u 50V	Multilayer Ceramic Capacitors (0805) 4.7µF 50V 10%	C0805	3	ток	C2012X5R1H475K		
C10	C1206 – 1n 500V	Multilayer Ceramic Capacitors (1206) 1nF 500V 10%	C1206	1	Vishay/Vitramon	VJ1206Y102KXEAT5Z		
C11	C0603 – 4.7u 10V	Multilayer Ceramic Capacitors (0603) 4.7µF 10V 10%	C0603	1	AVX	0603ZD475KAT2A		
C15	C0805 - 0.022u 450V	Multilayer Ceramic Capacitors (0805) 0.022µF 450V 10%	C0805	1	TDK	C2012X7T2W223K		
C40	C0603 – 2.2u 16V	Multilayer Ceramic Capacitors (0603) 2.2µF 16V 10%	C0603	1	ТDК	C1608X5R1C225KT		
C42	C1206 – 0.22u 250V	Multilayer Ceramic Capacitors (1206) 0.22µF 250V 10%	C1206	1	ток	C3216X7T2E224K		
¥5-	C0 2211E	Polyostar Film	WxLxH (mm) 5.5 x					
X6	250V	Capacitor	15.5	1	Panasonic	ECQ-E2224JB		
D1	HD06	Bridge Rectifiers 0.8A, 600V	MiniDip	1	Diodes Inc	HD06-T		
D2	MURS160	Super-Fast Rectifiers 1.0A, 600V	SMB	1	Diodes Inc	MURS160-13-F		
D3, D5, D8	SM4005PL- TP	Diode SIL 1.0A, 600V	Power lite 123	3	Micro Commercial Co	SM4005PL-TP		
D6	1N4148WT	Fast Switching Diode	SOD- 523	1	Diodes Inc	1N4148WT-7		
L1	SRR6028- 681Y	Power Inductors 680µH 220mA	L6028	1	Bourns	SRR6028-681Y		
AL 001	LOGADEV7 Day 4 East Internal Lies Only Dags 12 of 15							

AL9910EV7 120VAc Dimmable Modification Guide August 2012

			L12.5 x			
		Power Inductors	12.5 x		Wurth	
L2	7447709102	0.9A, 1mH	10	1	Electronics	7447709102
		MOSFET Power N-			ST	
Q1	STD7NM60N	Chan 600V, 5 Amp	D-PAK	1	Microelectronics	STD7NM60N
		MOSFET Power				
		COOL MOS N-CH				
Q2	SPD01N60C3	650V, 0.8A	D-PAK	1	Infineon	SPD01N60C3
		NPN Surface Small				
		Signal Transistor	SOT-			
Q6	BC847C	100mA. 45V	23	1	Diodes Inc	BC847C-7-F
		Varistors 300Vrms	Disc	-		
R1	S07K300	7MM Radial	7mm	1	EPCOS	S07K300
		Chip Resistor (1206)		-	Panasonic -	
R2	R1206 – 10k	10kO 1/10W 1%	R1206	1	ECG	ERJ-P8J103V
		Chip Resistor (0402)			Panasonic -	
R3	R0402 - 2k	2kO 1/10W 1%	R0402	1	FCG	FRJ-2RKF2001X
R6		Chip Resistor (0402)	110102		Panasonic -	
R40	R0402 - 22	220 1/10W 1%	R0402	2	FCG	FR.I-2RKF22R0X
1140		Chip Resistor (0805)	110402	~	200	
R7	R0805 - 1 62	1 620 1/8W/ 1%	R0805	1	Vishav	
	1.02	Chip Posistor (0402)	10000		Panasonic -	CREW00003 TROZI REA
DO	P0402 1k		P0402	1		
<u>N9</u>	K0402 - IK	Chip Register (0805)	K0402		Bonoconio	ERJ-ZRRF1001X
D10	D0905 10k		DOODE	1	Fariasonic -	
RIU	R0000 - 10K	10K12 1/8W 1%	RUOUS	I	Denegania	ERJ-0EINF1002V
D11			D0402	1	Panasonic -	
RII	R0402 - 2.2IVI	2.21VI2 1/10V 5%	R0402		ECG	ERJ-2GEJ225A
D10		Chip Resistor (0402)	D 0402	1	Panasonic -	
RIZ	R0402 - 200K	200R12 1/1000 1%	R0402	I	ECG	ERJ-2RKF2003A
D40	R1206 -	Chip Resistor (1206)	D4000	4	Ronm	
RIJ	4.7 IVI	4.71012 1/400 5%	R1206		Semiconductor	MCR18EZHJ475
DAA	D4000 040k	Chip Resistor (1206)	DODOF		Vieheu/Dele	
R14	R1206 - 348K	348KΩ 1/4VV 1%	R0805	1	Visnay/Dale	CRCW1206348KFKEA
DAG	D0400	Chip Resistor (0402)	D0400		Panasonic -	
R15	R0402 - 4.3K	4.3κΩ 1/1000 1%	R0402	1	ECG	ERJ-2RKF4301X
D 1 0		Chip Resistor (0402)	50400		Panasonic -	
R16	R0402 - 120k	120kΩ 1/10VV 1%	R0402	1	ECG	ERJ-2RKF1203X
		Chip Resistor (1206)	-		Rohm	
R17	R1206 – 249	249Ω 1/4W 1%	R1206	1	Semiconductor	MCR18EZHF2490
		Chip Resistor (1206)			Panasonic -	
R47	R1206 – 200	2000 1/4W 1%	R1206	1	ECG	ERJ-8ENF2000V
R18,		Chip Resistor (0805)		-	Panasonic -	
R20	R0805 - 1M	1MΩ 1/8W 1%	R0805	2	ECG	ERJ-6ENF1004V
		Chip Resistor (0402)			Panasonic -	
R19	R0402 - 1.2M	1.2MΩ 1/10W 5%	R0402	1	ECG	ERJ-2GEJ125X
		Chip Resistor (0805)			Panasonic -	
R21	R0805 - 510k	510kΩ 1/8W 1%	R0805	1	ECG	ERJ-6ENF5103V
		Chip Resistor (0402)			Panasonic -	
R22	R0402 - 300k	300kΩ 1/10W 1%	R0402	1	ECG	ERJ-2RKF3003X
		Chip Resistor (1206)			Panasonic -	
R23	R1206 - 750k	750kΩ 1/3W 5%	R1206	1	ECG	ERJ-P08J754V
		Chip Resistor (0805)			Panasonic -	
R35	R0805 - 750k	750kΩ 1/4W 5%	R0805	1	ECG	ERJ-P06J754V

AL9910EV7 Rev 1 (8/3/2012)

		Chip Resistor (0402)			Rohm	
R25	R0402 - 20k	20kΩ 1/10W 1%	R0402	1	Semiconductor	TRR01MZPF2002
		Chip Resistor (0603)			Panasonic -	
R29	R0603 - 180k	180kΩ 1/10W 1%	R0603	1	ECG	ERJ-3EKF1803V
		Chip Resistor (0402)			Panasonic -	
R32	R0402 - 360k	360kΩ 1/10W 1%	R0402	1	ECG	ERJ-2RKF3603X
		Chip Resistor (0402)			Panasonic -	
R41	R0402 - 750k	750kΩ 1/10W 1%	R0402	1	ECG	ERJ-2RKF7503X
	R1206 –	Chip Resistor (1206)			Rohm	
R42	1.6M	1.6MΩ 1/4W 5%	R1206	1	Semiconductor	MCR18EZHJ165
		Chip Resistor (0402)			Panasonic -	
R43	R0402 - 200	200Ω 1/10W 1%	R0402	1	ECG	ERJ-2RKF2000X
		Chip Resistor (0402)			Panasonic -	
R44	R0402 - 4.7k	4.7kΩ 1/10W 1%	R0402	1	ECG	ERJ-2RKF4701X
		Chip Resistor (0402)			Panasonic -	
R45	R0402 - 100k	100kΩ 1/10W 1%	R0402	1	ECG	ERJ-2RKF1003X
		Chip Resistor (0402)			Panasonic -	
R46	R0402 - 150k	150kΩ 1/10W 1%	R0402	1	ECG	ERJ-2RKF1503X
		Chip Resistor (1206)			Rohm	
R47	R1206 – 390	390Ω 1/3W 5%	R1206	1	Semiconductor	ESR18EZPJ391
	Thru-hole –	Through-hole -			Panasonic -	
R48	150	150Ω 1/2W 5%	Axial	1	ECG	ERD-S1TJ151V
		Chip Resistor (1206)			Rohm	
R49	R1206 – 15k	15kΩ 1/3W 5%	R1206	1	Semiconductor	ESR18EZPJ153
		LED Drivers - 10V				
	AL9910ASP	LED Driver PWM 85	SO-			
U1	-13	to 277VAC	8EP	1	Diodes Inc	AL9910ASP-13
		Comparator IC - Low			ST	
U2	LM2903	Power Dual Voltage	SO-8	1	Microelectronics	LM2903DT

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products or systems.

Copyright © 2012, Diodes Incorporated

www.diodes.com