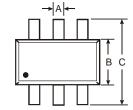
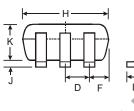
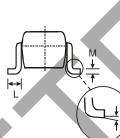


THESE PARTS ARE <u>OBSOLETE</u>. PLEASE CONTACT US.

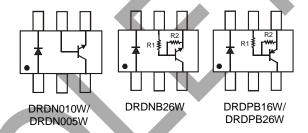



Features


- Epitaxial Planar Die Construction
- One Transistor and One Switching Diode in One Package
- Lead Free By Design/RoHS Compliant (Note 1)
- "Green" Device (Note 2)

Mechanical Data

- Case: SOT-363
- Case Material: Molded Plastic. "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020D
- Terminal Connections: See Diagram
- Terminals: Finish Matte Tin annealed over Alloy 42 leadframe. Solderable per MIL-STD-202, Method 208
- Marking Information: See Page 8
- Ordering Information: See Page 8
- Weight: 0.008 grams (approximate)



	SOT-363	3		
Dim	Min	Max		
Α	0.10	0.30		
В	1.15	1.35		
С	2.00	2.20		
D	0.65 Nominal			
F	0.30	0.40		
Н	1.80	2.20		
J	_	0.10		
K	0.90	1.00		
L	0.25	0.40		
M	0.10	0.25		
α	0° 8°			
All Din	nensions	in mm		

P/N	R1 (NOM)	R2 (NOM)
DRDPB16W	1K	10K
DRDNB26W	220	4.7K
DRDPB26W	220	4.7K

Maximum Ratings, Total Device @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Power Dissipation (Note 3)	P _D	200	mW
Thermal Resistance, Junction to Ambient Air (Note 3)	$R_{ hetaJA}$	625	°C/W
Operating and Storage Temperature Range	T _J , T _{STG}	-55 to +150	°C

Maximum Ratings, DRDN010W NPN Transistor @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	45	V
Collector-Emitter Voltage	V _{CEO}	18	V
Emitter-Base Voltage	V_{EBO}	5	V
Collector Current (Note 3)	I _C	1000	mA

Maximum Ratings, DRDN005W NPN Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	80	V
Collector-Emitter Voltage	V _{CEO}	80	V
Emitter-Base Voltage	V _{EBO}	4.0	V
Collector Current – Continuous (Note 3)	Ic	500	mA

Notes:

- 1. No purposefully added lead.
- 2. Diodes Inc.'s "Green" policy can be found on our website at http://www.diodes.com/products/lead_free/index.php.
- 3. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch; pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on page 9 or our website at http://www.diodes.com/datasheets/ap02001.pdf.

Maximum Ratings, DRDNB26W Pre-Biased NPN Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	50	V
Input Voltage	V _{IN}	-5 to +5	V
Output Current	Ic	600	mA

Maximum Ratings, DRDPB16W Pre-Biased PNP Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	-50	V
Input Voltage	V _{IN}	+5 to -10	V
Output Current	I _C	600	mA

Maximum Ratings, DRDPB26W Pre-Biased PNP Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	-50	V
Input Voltage	V _{IN}	+5 to -5	V
Output Current	Ic	-600	mA

Maximum Ratings, Switching Diode @TA = 25°C unless otherwise specified

Characteristic		Symbol	Value	Unit
Non-Repetitive Peak Reverse Voltage		V_{RM}	100	V
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _R WM	75	V
RMS Reverse Voltage		V _{R(RMS)}	53	V
Forward Continuous Current	(Note 3)	I _{FM}	500	mA
Average Rectified Output Current	(Note 3)	Io	250	mA
Non-Repetitive Peak Forward Surge Current	@ t = 1.0μs @ t = 1.0s	I _{FSM}	4.0 2.0	A

Electrical Characteristics, DRDN010W NPN Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition
DC Current Gain	h _{FE}	150	800	_	$I_C = 100 \text{mA}, V_{CE} = 1 \text{V}$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	0.5	V	$I_C = 300 \text{mA}, I_B = 30 \text{mA}$
Collector-Base Breakdown Voltage	$V_{(BR)CBO}$	45	_	V	$I_C = 100 \mu A, I_E = 0$
Collector-Emitter Breakdown Voltage	$V_{(BR)CEO}$	18	_	V	$I_C = 1 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	$V_{(BR)EBO}$	5	_	V	$I_E = 100 \mu A, I_C = 0$
Collector Cutoff Current	I _{CBO}	_	1	μΑ	V _{CB} = 40V, I _E = 0
Emitter Cutoff Current	I _{EBO}	_	1	μΑ	$V_{EB} = 4V$, $I_C = 0$
Current Gain-Bandwidth Product	f _T	100		MHz	V _{CE} = 10V, I _C = 50mA, f = 100MHz
Capacitance	C _{obo}	_	8	pF	$V_{CB} = 10V, I_E = 0, f = 1MHz$

Electrical Characteristics, DRDN005W NPN Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition
Collector-Base Breakdown Voltage	V _{(BR)CBO}	80	_	V	$I_C = 100 \mu A, I_E = 0$
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	80	_	V	$I_C = 1.0 \text{mA}, I_B = 0$
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	4.0	_	V	$I_E = 100 \mu A, I_C = 0$
Collector Cutoff Current	I _{CBO}	_	100	nA	$V_{CB} = 60V, I_{E} = 0$ $V_{CB} = 80V, I_{E} = 0$
Collector Cutoff Current	I _{CES}		100	nA	$V_{CE} = 60V, I_{BO} = 0V$ $V_{CE} = 80V, I_{BO} = 0V$
DC Current Gain	h _{FE}	100	_	_	$I_C = 10mA, V_{CE} = 1.0V$ $I_C = 100mA, V_{CE} = 1.0V$
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	_	0.25	V	I _C = 100mA, I _B = 10mA
Base-Emitter Saturation Voltage	V _{BE(SAT)}	_	1.2	V	I _C = 100mA, V _{CE} = 1.0V
Current Gain-Bandwidth Product	f _T	100	_	MHz	$V_{CE} = 2.0V, I_{C} = 10mA,$ f = 100MHz

Electrical Characteristics, DRDNB26W Pre-Biased NPN Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Input Voltage	$V_{I(off)}$	0.5	_		V	$V_{CC} = 5V, I_{O} = 100\mu A$
input voitage	$V_{I(on)}$		_	3.0	V	$V_O = 0.3V, I_O = 20mA$
Output Voltage	$V_{O(on)}$			0.3V	V	$I_0/I_1 = 50 \text{mA}/2.5 \text{mA}$
Input Current	I _I	_	_	28	mΑ	$V_I = 5V$
Output Current	I _{O(off)}	_	_	0.5	μΑ	$V_{CC} = 50V$, $V_I = 0V$
DC Current Gain	Gı	47	_	_	_	V _O = 5V, I _O = 50mA
Gain-Bandwidth Product	f⊤		200		MHz	$V_{CE} = 10V$, $I_E = 5mA$, $f = 100MHz$

Electrical Characteristics, DRDPB16W Pre-Biased PNP Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition
Input Voltage	$V_{I(off)}$	-0.3	_		V	$V_{CC} = -5V, I_O = -100\mu A$
input voltage	$V_{I(on)}$			-2.0	V	$V_O = -0.3V$, $I_O = -20mA$
Output Voltage	V _{O(on)}	_	_	-0.3V	V	$I_{O}/I_{I} = -50 \text{mA}/-2.5 \text{mA}$
Input Current	I _I	_	_	-7.2	mΑ	$V_I = -5V$
Output Current	I _{O(off)}	_	_	-0.5	μΑ	$V_{CC} = -50V, V_I = 0V$
DC Current Gain	Gı	56	_	_	_	$V_O = -5V$, $I_O = -50mA$
Gain-Bandwidth Product	f⊤	_	200	_	MHz	$V_{CE} = -10V$, $I_{E} = -5mA$, $f = 100MHz$

Electrical Characteristics, DRDPB26W Pre-Biased PNP Transistor @TA = 25°C unless otherwise specified

Characteristic	Symbol Min Typ M		Max	Unit	Test Condition			
Input Voltage	$V_{I(off)}$	-0.5	_	_	V	$V_{CC} = -5V, I_O = -100 \mu A$		
input voltage	$V_{I(on)}$	_	_	-3.0	V	$V_O = -0.3V$, $I_O = -20mA$		
Output Voltage	V _{O(on)}	_	_	-0.3V	V	$I_{O}/I_{I} = -50 \text{mA}/-2.5 \text{mA}$		
Input Current	l _l	_	_	-28	mA	V _I = -5V		
Output Current	I _{O(off)}	_	_	-0.5	μΑ	$V_{CC} = -50V, V_{I} = 0V$		
DC Current Gain	Gı	47	_	_	_	$V_O = -5V$, $I_O = -50mA$		
Gain-Bandwidth Product	f⊤		200	_	MHz	$V_{CE} = -10V$, $I_{E} = -5mA$, $f = 100MHz$		

Electrical Characteristics, Switching Diode @TA = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Condition		
Reverse Breakdown Voltage (Note 4)	$V_{(BR)R}$	75	_	_	$I_R = 10\mu A$		
	V _F	0.62	0.72		$I_F = 5.0 \text{mA}$		
Forward Voltage		_	0.855	V	$I_F = 10mA$		
1 orward voltage		_	1.0	•	$I_F = 100 \text{mA}$		
		_	1.25		I _F = 150mA		
	I _R		2.5	μΑ	$V_R = 75V$		
Reverse Current (Note 4)			50	μΑ	$V_R = 75V, T_J = 150^{\circ}C$		
Neverse Guiterii (Note 4)		_	30 25	μΑ	$V_R = 25V, T_J = 150^{\circ}C$		
				nA	$V_R = 20V$		
Total Capacitance	C _T	_	4.0	pF	V _R = 0, f = 1.0MHz		
Reverse Recovery Time	+		4.0	ns	$I_F = I_R = 10 \text{mA},$		
Noverse Necessary Time	t _{rr}			113	$I_{rr} = 0.1 \text{ x } I_{R}, R_{L} = 100\Omega$		

Notes: 4. Short duration pulse test used to minimize self-heating effect.

Device Characteristics

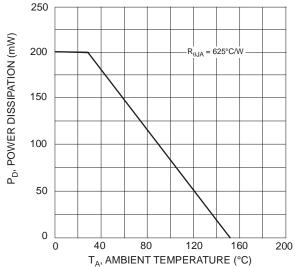


Fig. 1, Power Derating Curve (Total Device)

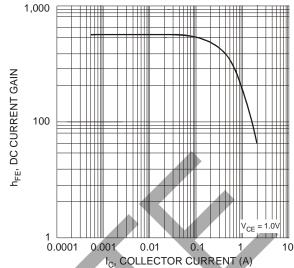


Fig. 2, Typical DC Current Gain vs. Collector Current (DRDN010W)

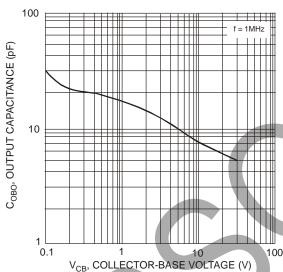


Fig. 3, Typical Output Capacitance vs.
Collector-Base Voltage (DRDN010W)

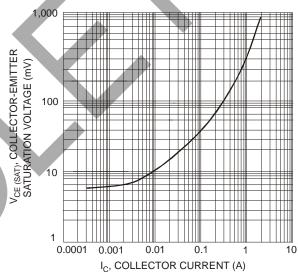
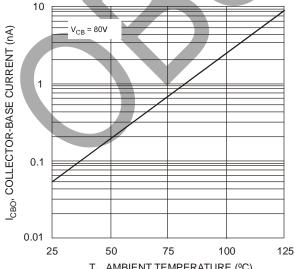



Fig. 4, Typical Collector Saturation Voltage vs.
Collector Current (DRDN010W)

 ${\rm T_A}$, AMBIENT TEMPERATURE (°C) Fig. 5, Typical Collector-Cutoff Current vs. Ambient Temperature (DRDN005W)

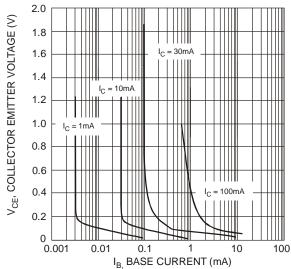


Fig. 6, Typical Collector Saturation Region (DRDN005W)

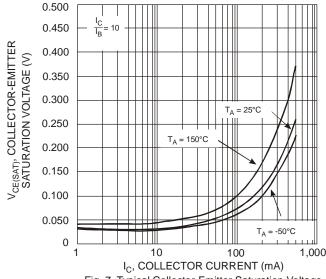


Fig. 7, Typical Collector-Emitter Saturation Voltage vs. Collector Current (DRDN005W)

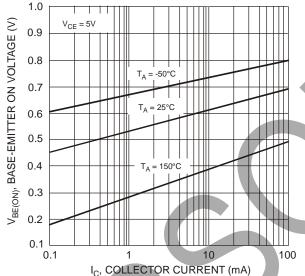
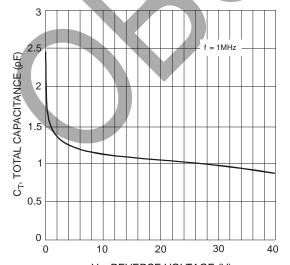
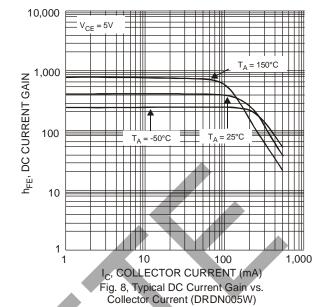
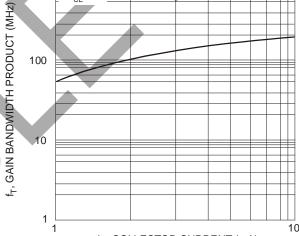




Fig. 9, Typical Base-Emitter On Voltage vs. Collector Current (DRDN005W)

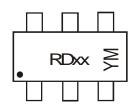


V_R, REVERSE VOLTAGE (V) Fig. 11, Typical Capacitance vs. Reverse Voltage (Switching Diode)

1,000

V_{CE} = 5V

I_C, COLLECTOR CURRENT (mA)
Fig. 10, Typical Gain Bandwidth Product vs.
Collector Current (DRDN005W)



Ordering Information (Note 5)

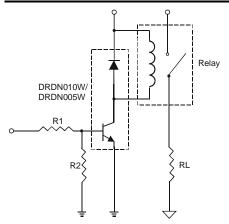
Device	Packaging	Shipping
DRDN010W-7	SOT-363	3000/Tape & Reel
DRDNB26W-7	SOT-363	3000/Tape & Reel
DRDPB16W-7	SOT-363	3000/Tape & Reel
DRDPB26W-7	SOT-363	3000/Tape & Reel
DRDN005W-7	SOT-363	3000/Tape & Reel

Notes: For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

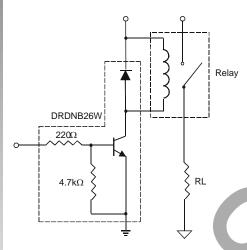
Marking Information

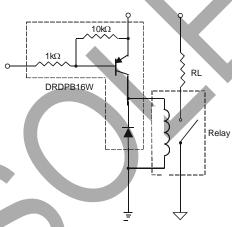
RDxx = Product Type Marking Code: RD01 = DRDN010W RD04 = DRDNB26W RD05 = DRDPB16W

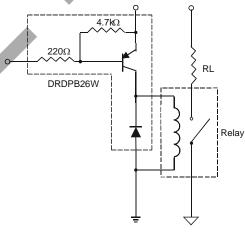
RD06 = DRDPB26W RD07 = DRDN005W YM = Date Code Marking Y = Year ex: S = 2005


M = Month ex: 9 = September

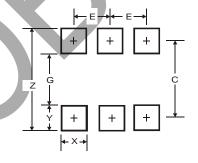
Date Code Key


Date Code Key												
Year	2005	5	2006	2007	7	2008	2009	١	2010	2011		2012
Code	S		Т	U		V	W		Χ	Υ		Z
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Code	1	2	3	4	5	6	7	8	9	0	N	D


Sample Applications


Application Example: DRDN010W/DRDN005W current sink configuration, bias resistors not included

Application Example: DRDNB26W current sink configuration with built-in bias resistors (low R1)



Application Example: DRDPB16W current source configuration with built-in bias resistors

Application Example: DRDPB26W current source configuration with built-in bias resistors (low R1)

Suggested Pad Layout

Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
С	1.9
E	0.65

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2024 Diodes Incorporated. All Rights Reserved.

www.diodes.com