
SOT23 NPN SILICON PLANAR PART OBSOLETE HIGH SPEED SWITCHING TRANSISTOR

BSV52

PARTMARKING DETAILS:

BSV52 - B2 BSV52R -- B4

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT	
Collector-Base Voltage	V _{CBO}	20	V	
Collector-Emitter Voltage	V _{CES}	20	V	
Collector-Emitter Voltage	V _{CEO}	12	V	
Emitter-Base Voltage	V _{EBO}	5	V	
Peak Pulse Current	I _{CM}	200	mA	
Continuous Collector Current	I _C	100	mA	
Power Dissipation at T _{amb} = 25°C	Ртот	330	mW	
Operating and Storage Temperature Range	tj:tstg	55 to +150	°C	

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Collector-Base Cut-Off Current	СВО			100 5.0	nA μA	$I_E = 0$, $V_{CB} = 10V$ $I_E = 0$, $V_{CB} = 10V$, $T_j = 125$ °C
Collector-Emitter Saturation Voltage	V _{CE(sat)}		-	300 250 400	mV mV mV	$I_C = 10\text{mA}, \ I_B = 0.3\text{mA}$ $I_C = 10\text{mA}, \ I_B = 1.0\text{mA}$ $I_C = 50\text{mA}, \ I_B = 5.0\text{mA}$
Base-Emitter Saturation Voltage	V _{BE(sat)}	700	-	850 1.2	mV V	$I_C = 10mA$, $I_B = 1.0mA$ $I_C = 50mA$, $I_B = 5.0mA$
Static Forward Current Transfer Ratio	h _{FE}	25 40 25		120		$I_C = 1.0 \text{mA}, \ V_{CE} = 1.0 \text{V}$ $I_C = 10 \text{mA}, \ V_{CE} = 1.0 \text{V}$ $I_C = 50 \text{mA}, \ V_{CE} = 1.0 \text{V}$
Transition Frequency	f _T	400	500		MHz	$I_C = 10 \text{mA}, V_{CE} = 10 \text{V}$ f = 100MHz
Collector Capacitance	C _{TC}			4.0	pF	$I_E = I_e = 0, V_{CB} = 5.0V$ f = 1.0MHz
Emitter Capacitance	C _{Te}			4.5	pF	$I_C = I_c = 0$, $V_{EB} = 1.0V$ f = 1.0MHz
Turn-On Time	Ton			12	ns	$V_{CC} = 3V$, $V_{BE(off)} = 1.5V$ $I_{C} = 10mA$, $I_{B1} = 3mA$ (see Fig. 1)
Turn-Off Time	T _{off}			18	ns	$V_{CC} = 3V$, $I_{C} = 10mA$, $I_{B1} = 3mA$ $I_{B2} = 1.5mA$ (see Fig. 2)
Storage Time	t _s			13	ns	$I_{B1} = I_{B2} = I_C = 10mA$ (see Fig. 3)

For Switching Time Circuit see page DS201