PART OBSOLETE - DISCONTINUED

(4) PERICOM

PI3VDP12412

4-Lane DisplayPort ${ }^{\text {mim }}$ Rev 1.2 Compliant Switch
 Description

Features

\rightarrow 4-lane, 1:2 mux/demux that will support RBR, HBR1, or HBR2
\rightarrow 1-channel 1:2 mux/demux for DP_HPD signal
\rightarrow 1-differential channel 1:2 mux/demux for DP_Aux signal with support up to 720 Mbps
$\rightarrow-1.6 \mathrm{~dB}$ Insertion Loss for Dx channels @ 2.7 GHz (TQFN)
\rightarrow-3dB Bandwidth for Dx channels: 4.6 GHz (TQFN)
\rightarrow Return loss for Dx channels @ 2.7GHz: -16dB (TQFN)
\rightarrow Low Bit-to-Bit Skew, 5ps typ (between '+' and '-' bits)
\rightarrow Low Crosstalk for high speed channels: -28dB@5.4 Gbps
\rightarrow Low Off Isolation for high speed channels: -22dB@5.4 Gbps
$\rightarrow \mathrm{V}_{\mathrm{DD}}$ Operating Range: $3.3 \mathrm{~V}+/-10 \%$
\rightarrow ESD Tolerance: 2 kV HBM
\rightarrow Low channel-to-channel skew, 35ps max
\rightarrow Packaging (Pb-free \& Green):

Pericom Semiconductor's PI3VDP12412 mux/demux is targeted for next generation digital video signals. This device can be used to connect a DisplayPort ${ }^{\text {mix }}$ Source to two Independent DisplayPort Sinks or to connect two DisplayPort sources to a single DP display.
PI3VDP12412 supports DisplayPort 1.2 which requires a data rate of 5.4 Gbps. PI3VDP12412 offers excellent signal integrity at this high data rate with very low insertion loss, good return loss, and very small crosstalk.
PI3VDP12412 is available in two package types, a $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ 48 BGA and a $3.5 \mathrm{~mm} \times 9 \mathrm{~mm} 42 \mathrm{TQFN}$. The BGA consumes less board space. The TQFN achieves slightly better signal integrity.

Application

Routing of DisplayPort signals with low signal attenuation between source and sink.

Block Diagram

Pin Assignment (TQFN-42, ZHE)

Pin Assignment (48-Ball BGA, NEE)

Truth Table for 42 pin package

OE	GPU_ SEL	AUX_ HPD_ SEL	Function
High	Low	Low	Port A active for all channels
High	Low	High	Port A for HS, port B for HPD/AUX
High	High	Low	Port B for HS, port A for HPD/AUX
High	High	High	Port B active for all channels
Low	x	x	All I/O's are hi-z and IC is power down

| OE | GPU__
 SEL | DDC_
 AUX_
 SEL | Function |
| :--- | :--- | :--- | :--- |$|$| High | Low | Low | Port A active for AUX, HPD \& HS
 channel |
| :--- | :--- | :--- | :--- |
| High | Low | High | Port A active for DDC, HPD, \& HS
 channel |
| High | High | Low | Port B active for AUX, HPD \& HS
 channel |
| High | High | High | Port B active for DDC, HPD \& HS
 channel |
| Low | x | x | all I/Os are hi-z and IC is power down |

42ZHE pin\#	48NEE pin\#	pin Name	Signal Type	Description
2	A1	GPU_SEL	I	switch logic control. different function for different package options: 42pin TQFN package: If HIGH, then path B is selected for high speed channels only If LOW, then path A is selected for high speed channels only 48ball BGA package: If HIGH, then path B is selected for all channels If LOW, then path A is selected for all channels
3	B1	D0-	I/O	negative differential signal 0 for COM port
4	B2	D0+	I/O	positive differential signal 0 for COM port
6	D1	D1-	I/O	negative differential signal 1 for COM port
7	D2	D1+	I/O	positive differential signal 1 for COM port
8	E1	D2-	I/O	negative differential signal 2 for COM port
9	E2	D2+	I/O	positive differential signal 2 for COM port
10	F1	D3-	I/O	negative differential signal 3 for COM port
11	F2	D3+	I/O	positive differential signal 3 for COM port
1	B3	GND	Ground	Ground
13	H1	AUX-	I/O	negative differential signal for AUX COM port
14	H2	AUX+	I/O	positive differential signal for AUX COM port
18	J1	HPD	I/O	HPD for COM port
16	J2	HPD_A	I/O	HPD for port A
15	H3	HPD_B	I/O	HPD for port B
17	C8	GND	Ground	Ground
12	J4	VDD	Pwr	$3.3 \mathrm{~V}+/-10 \%$ power supply
	G2	GND	Ground	Ground
20	H6	AUX+B	I/O	positive differential signal for AUX, port B
19	J6	AUX-B	I/O	negative differential signal for AUX, port B
23	H9	AUX+A	I/O	positive differential signal for AUX, port A
24	J9	AUX-A	I/O	negative differential signal for AUX, port A
22	G8	GND	Ground	Ground
26	F8	D3+B	I/O	positive differential signal 3 for portB
27	F9	D3-B	I/O	negative differential signal 3 for portB
28	E8	D2+B	I/O	positive differential signal 2 for portB
29	E9	D2-B	I/O	negative differential signal 2 for portB
30	D8	D1+B	I/O	positive differential signal 1 for portB
31	D9	D1-B	I/O	negative differential signal 1 for portB
32	B8	D0+B	I/O	positive differential signal 0 for portB (Continued)

42ZHE pin\#	48NEE pin\#	pin Name	Signal Type	Description
33	B9	D0-B	I/O	negative differential signal 0 for portB
35	A8	D3+A	I/O	positive differential signal 3 for port A
36	A9	D3-A	I/O	negative differential signal 3 for port A
	H4	GND	Ground	
37	B6	D2+A	I/O	positive differential signal 2 for port A
38	A6	D2-A	I/O	negative differential signal 2 for port A
39	B5	D1+A	I/O	positive differential signal 1 for port A
40	A5	D1-A	I/O	negative differential signal 1 for port A
41	B4	D0+A	I/O	positive differential signal 0 for port A
42	A4	D0-A	I/O	negative differential signal 0 for port A
21	A2	VDD	Pwr	Power
34		VDD	Pwr	Power
N/A	C2	$\begin{aligned} & \text { DDC_- } \\ & \text { AUX_SEL } \end{aligned}$	I	toggles between passing DDC channels through or AUX channels through If HIGH, then path DDC signals are passed through (depending on port selection via GPU_SEL) If LOW, then path AUX signals are passed through (depending on port selection via GPU_SEL)
5	N/A	$\begin{aligned} & \text { AUX_HPD_ } \\ & \text { SEL } \end{aligned}$	I	switches only the AUX and HPD channels from port A vs. port B
N/A	H5	SCL_B	I/O	DDC_clock channel for port B
N/A	H7	GND	Ground	
N/A	H8	SCL_A	I/O	DDC_clock channel for port A
N/A	J5	SDA_B	I/O	DDC_data channel for port B
N/A	J8	SDA_A	I/O	DDC_data channel for port A
25	B7	OE	I	Output enable. if OE is high, IC is enabled. If OE is low, then IC is power down and all I/Os are hi-z
43	N/A	Center pad	Ground	Ground

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +4.2 V
DC Input Voltage -0.5 V to V_{DD}
DC Output Current \qquad 120 mA
Power Dissipation \qquad 0.5 W

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Electrical Characteristics for Switching over Operating Range $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=$ $3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed HIGH level	1.5			V
VIL	Input LOW Voltage	Guaranteed LOW level			0.75	
VIK	Clamp Diode Voltage (HS Channel)	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		$-1.6 \mathrm{~V}$	-1.8	
VIK	Clamp Diode Voltage (Aux, Cntrl)	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-0.7	-1.5	
IIH	Input HIGH Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$			± 5	$\mu \mathrm{A}$
IIL	Input LOW Current	$\mathrm{V}_{\mathrm{DD}}=$ Max., $\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 5	
$\mathrm{I}_{\text {OFF_SB }}$	I/O leakage when part is off for sideband signals only (DDC, AUX, HPD)	$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{~V}_{\text {InPUT }}=0 \mathrm{~V}$ to 3.6 V			20	
RON_HS	On resistance between input to output for high speed signals	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \text { Vinput }=-0.35 \mathrm{~V} \text { to } 2 \mathrm{~V}, \\ & \mathrm{I}_{\text {INPUT }}=20 \mathrm{~mA} \end{aligned}$		10.0		Ohm
RON_AUX	On resistance between input to output for side-band signals (AUX)	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, Vinput $=0$ to 3.3 V , $\mathrm{I}_{\text {INPUT }}=20 \mathrm{~mA}$		7		Ohm
$\mathrm{R}_{\text {ON_DDC }}$	On resistance between input to output for DDC channel	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \text { Vinput }=0 \mathrm{~V}, \\ & \mathrm{I}_{\text {INPUT }}=20 \mathrm{~mA} \end{aligned}$		10		Ohm
Aux_ss	Signal Swing Tolerance in Aux path	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$	-0.5		3.6	V
HPD_I	Input voltage on HPD path				5.5	V
HPD_O	Output voltage tolerance on HPD path	HPD input from 3.3 V to 5.25 V		3.3	3.6	V

Power Supply Characteristics $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}$)

Parameter	Description	Test Conditions ${ }^{(1)}$	Min	Typ ${ }^{(2)}$	Max	Units
I_{DD}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OE}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$		0.4	1	mA
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Power Supply Current	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{OE}=\mathrm{GND}$		1		$\mu \mathrm{A}$

[^0]| Parameter | Description | Test Conditions ${ }^{1}$ | | Min | Typ ${ }^{2}$ | MAX | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{X}_{\text {TALK }}$ | Crosstalk on High Speed Channels | See Fig. 1 for Measurement Setup | $\mathrm{f}=2.7 \mathrm{GHz}$ | | -28 | -25 | dB |
| | | | $\mathrm{f}=1.35 \mathrm{GHz}$ | | -32 | -28 | |
| OIRR | OFF Isolation on High Speed Channels | See Fig. 2 for Measurement Setup, | $\mathrm{f}=2.7 \mathrm{GHz}$ | | -22 | -20 | |
| | | | $\mathrm{f}=1.35 \mathrm{GHz}$ | | -30 | -27 | |
| $\mathrm{I}_{\text {LOSS }}$ | Differential Insertion Loss on High Speed Channels | @ 5.4 Gbps (see figure 3) | TQFN package | -1.8 | -1.6 | | dB |
| | | | BGA package | -2.0 | -1.8 | | |
| $\mathrm{R}_{\text {loss }}$ | Differential Return Loss on high speed channels | @ 2.7GHz (5.4Gbps) | TQFN package | | -16.0 | -14 | dB |
| | | | BGA package | | -14 | -12.5 | |
| BW_Dx \pm | Bandwidth -3dB for Main high speed path ($\mathrm{Dx} \pm$) | | TQFN package | 4.1 | 4.6 | | GHz |
| | | See figure 3 | BGA package | 3.7 | 4.1 | | |
| $\begin{aligned} & \text { BW_AUX/ } \\ & \text { HPD } \end{aligned}$ | -3dB BW for AUX and HPD signals | See figure 3 | | 1.35 | 1.5 | | GHz |
| Tsw a-b | time it takes to switch from port A to port B | | | | | 1 | us |
| Tsw b-a | time it takes to switch from port B to port A | | | | | 1 | us |
| Tstartup | V_{DD} valid to channel enable | | | | | 10 | us |
| Twakeup | Enabling output by changing OE from low to High | | | | | 10 | us |

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.

Switching Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%$)

Parameter	Description	Min.	Typ.	Max.	Units
T_{pd}	Propagation delay (input pin to output pin) on all channels		80		ps
$\mathrm{tb}_{\mathrm{b}-\mathrm{b}}$	Bit-to-bit skew within the same differential pair of Dx \pm channels		5	7	ps
$\mathrm{t}_{\text {ch-ch }}$	Channel-to-channel skew of Dx \pm channels			35	ps

Fig 1. Crosstalk Setup

Fig 2. Off-isolation setup

Fig 3. Differential Insertion Loss

Test Circuit for Dynamic Electrical Characteristics

Fig 4. Crosstalk

Fig 5. Off Isolation

Fig 6. Insertion Loss

Notes:

1. $\mathrm{C}_{\mathrm{L}}=$ Load capacitance: includes jig and probe capacitance.
2. $\mathrm{R}_{\mathrm{T}}=$ Termination resistance: should be equal to $\mathrm{Z}_{\mathrm{OUT}}$ of the Pulse Generator
3. Output 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
4. Output 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
5. All input impulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{R}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{F}} \leq 2.5 \mathrm{~ns}$.
6. The outputs are measured one at a time with one transition per measurement.

Switching Waveforms

Voltage Waveforms Enable and Disable Times

Switch Positions

Test	Switch
t $_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$ (output on B-side)	$2^{\star} \mathrm{V}_{\mathrm{DD}}$
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$ (output on B-side)	GND
Prop Delay	Open

Note:
For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

\qquad
12.50

Note:
For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Code	Package Code	Package Description
PI3VDP12412ZHE	ZH	Pb-free \& Green, 42-contact TQFN
PI3VDP12412NEE	NE	Pb-free \& Green, 48-ball BGA

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an " X " at the end of the ordering code denotes tape and reel packaging

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/ important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries.
All other trademarks are the property of their respective owners.
© 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com

[^0]: 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
 2. Typical values are at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ambient and maximum loading.
