

HIGH FREQUENCY HIGH-SIDE AND LOW-SIDE GATE DRIVER IN W-DFN3030-10

Description

The DGD0507 is a high-frequency gate driver capable of driving Nchannel MOSFETs. The floating high-side driver is rated up to 50V.

The DGD0507 logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with MCUs. UVLO for high-side and low-side will protect a MOSFET with loss of supply. To protect MOSFETs, cross conduction prevention logic prevents the HO and LO outputs from being on at the same time.

Fast and well matched propagation delays allow a higher switching frequency, enabling a smaller, more compact power switching design, using smaller associated components. To minimize space an internal bootstrap diode is included.

The DGD0507 is offered in the W-DFN3030-10 (Type TH) package and operates over an extended -40°C to +125°C temperature range.

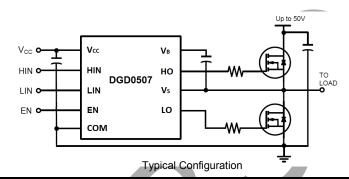
Applications

- DC-DC Converters
- Motor Controls
- Battery Powered Hand Tools
- eCig Devices
- Class D Power Amplifiers

Features

- 50V Floating High-Side Driver
- Drives Two N-channel MOSFETs in a Half-Bridge Configuration
- 1.25A Source / 2.0A Sink Output Current Capability
- Internal Bootstrap Schottky Diode Included
- Undervoltage Lockout for High-Side and Low-Side Drivers
- Delay Matching a Typical of 5ns
- Propagation Delay Typical of 35ns
- Logic Input (HIN, LIN and EN) 3.3V Capability
- Ultra Low Standby Currents (<1µA)
- Extended Temperature Range: -40°C to +125°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony free. "Green" Device (Note 3)

Mechanical Data


Top View

- Case: W-DFN3030-10 (Type TH)
- Case Material: Molded Plastic. "Green" Molding Compound UL Flammability Classification Rating 94V-0

Bottom View

- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish Matte Tin Finish Solderable per MIL-STD-202, Method 208 ⁽²⁾
 Weight: 0.017 grams (Approximate)

W-DFN3030-10 (Type TH)

Ordering Information (Note 4)

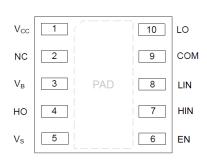
Product	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
DGD0507FN-7	DGD0507	7	8	3,000

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

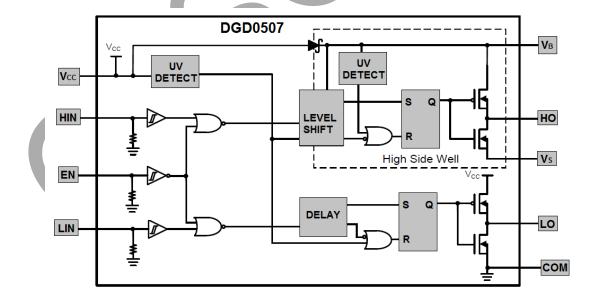
Notes:



DGD0507 = Product Type Marking Code YY = Year (ex: 17 = 2017) WW = Week (01 to 53)

^{2.} See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

Pin Diagrams



Top View: W-DFN3030-10 (Type TH)

Pin Descriptions

Pin Number	Pin Name	Function
1	V _{CC}	Low-Side and Logic Supply
2	NC	No Connect (No Internal Connection)
3	VB	High-Side Floating Supply
4	НО	High-Side Gate Drive Output
5	Vs	High-Side Floating Supply Return
6	EN	Logic Input Enable, a Logic Low Turns off Gate Driver
7	HIN	Logic Input for High-Side Gate Driver, in Phase with HO
8	LIN	Logic Input for Low-Side Gate Driver, in Phase with LO
9	COM	Low-Side and Logic Return
10	LO	Low-Side Gate Drive Output
PAD	Substrate	Connect to COM on PCB

Functional Block Diagram

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
High-Side Floating Positive Supply Voltage	V _B	-0.3 to +50	V
High-Side Floating Negative Supply Voltage	Vs	V _B -14 to V _B +0.3	V
High-Side Floating Output Voltage	V _{HO}	V _S -0.3 to V _B +0.3	V
Offset Supply Voltage Transient	dVs / dt	50	V/ns
Logic and Low-Side Fixed Supply Voltage	Vcc	-0.3 to +15	V
Low-Side Output Voltage	V _{LO}	-0.3 to V _{CC} +0.3	V
Logic Input Voltage (HIN, LIN and EN)	V _{IN}	-0.3 to 15	V

Thermal Characteristics (@T_A = +25°C, unless otherwise specified.)

	0. male al	Walter	11-14
Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	PD	0.4	W
Thermal Resistance, Junction to Ambient (Note 5)	R _{0JA}	64	°C/W
Thermal Resistance, Junction to Case (Note 5)	R _{θJC}	42	°C/W
Operating Temperature	TJ	+150	
Lead Temperature (Soldering, 10s)	TL	+300	°C
Storage Temperature Range	T _{STG}	-55 to +150	

Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

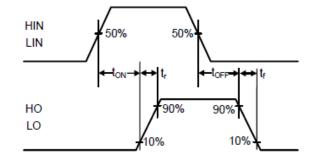
Parameter	Symbol	Min	Мах	Unit
High-Side Floating Supply	VB	V _S + 8	V _S + 14	V
High-Side Floating Supply Offset Voltage	Vs	(Note 6)	50 (Note 7)	V
High-Side Floating Output Voltage	V _{HO}	Vs	VB	V
Logic and Low Side Fixed Supply Voltage	Vcc	8	14	V
Low-Side Output Voltage	VLO	0	Vcc	V
Logic Input Voltage (HIN, LIN and EN)	VIN	0	5	V
Ambient Temperature	TA	-40	+125	°C

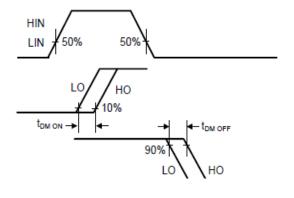
Notes: 6. Logic operation for V_S of -5V to +50V. Logic state held for V_S of -5V to - V_{BS} .

7. Provided V_B doesn't exceed absolute maximum rating of 50V.

DC Electrical Characteristics ($V_{CC} = V_{BS} = 12V$, COM = $V_S = 0V$, @T_A = +25°C, unless otherwise specified.) (Note 8)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Logic "1" Input Voltage	VIH	2.4	-	_	V	-
Logic "0" Input Voltage	VIL	-	-	0.8	V	-
Enable Logic "1" Input Voltage	V _{ENIH}	1.5	-	-	V	-
Enable Logic "0" Input Voltage	VENIL	-	-	0.7	V	-
Input Voltage Hysteresis	VINHYS	-	0.6	-	V	-
Enable Input Voltage Hysteresis	VENINHYS	-	0.1	-	V	-
High Level Output Voltage, V _{BIAS} - V _O	V _{OH}	1	0.45	0.6	V	I _{O+} = 100mA
Low Level Output Voltage, V _O	V _{OL}	-	0.15	0.22	V	I _O = 100mA
Offset Supply Leakage Current	I _{LK}	-	10	50	μA	V _B = V _S = 50V
V _{CC} Shutdown Supply Current	I _{CCSD}	-	0	1	μA	$N_{\rm IN}$ = 0V or 5V, V _{EN} = 0V
V _{CC} Quiescent Supply Current	ICCQ	100	150	200	μA	$V_{IN} = 0V \text{ or } 5V$
V _{CC} Operating Supply Current	ICCOP	-	2.1	3.0	mA	fs = 500kHz
V _{BS} Quiescent Supply Current	I _{BSQ}	-	62	100	μA	V _{IN} = 0V or 5V
V _{BS} Operating Supply Current	IBSOP	-	1.1	2.0	mA	fs = 500kHz
Logic "1" Input Bias Current	I _{IN+}	-	-	50	μA	V _{IN} = 5V
Logic "0" Input Bias Current	I _{IN-}	-		5	μA	$V_{IN} = 0V$
Enable Logic "1" Input Bias Current	I _{ENIN+}	1	43	60	μA	V _{IN} = 5V
Enable Logic "0" Input Bias Current	I _{ENIN-}	-	0	5	μA	V _{IN} = 0V
V _{BS} Supply Undervoltage Positive Going Threshold	V _{BSUV+}	5.9	6.9	7.9	V	
V _{BS} Supply Undervoltage Negative Going Threshold	V _{BSUV-}	5.6	6.6	7.6	V	1
V _{CC} Supply Undervoltage Positive Going Threshold	V _{CCUV+}	5.9	6.9	7.9	V	—
V _{CC} Supply Undervoltage Negative Going Threshold	V _{CCUV-}	5.6	6.6	7.6	V	-
Output High Short Circuit Pulsed Current	I _{O+}	0.9	1.25	_	А	$V_0 = 0V$, PW $\leq 10\mu s$
Output Low Short Circuit Pulsed Current	lo-	1.5	2.0	-	A	V _O = 15V, PW ≤ 10µs
Forward Voltage of Bootstrap Diode	V _{F1}	-	0.27	-	V	I _F = 100μA
Forward Voltage of Bootstrap Diode	V _{F2}	-	0.8		V	I _F = 100mA


Note: 8. The V_{IN} and I_{IN} parameters are applicable to the two logic pins: HIN, LIN and EN. The V_O and I_O parameters are applicable to the respective output pins: HO and LO.


AC Electrical Characteristics (V_{CC} = V_{BS} = 12V, COM = V_S = 0V, C_L = 1000pF, @T_A = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Turn-On Propagation Delay	t _{ON}	-	20	35	ns	-
Turn-Off Propagation Delay	toff	-	23	56	ns	V _S = 50V
Delay Matching, HO & LO Turn-On	t _{DM}	-	-	5	ns	-
Turn-On Rise Time	t _R	-	23	35	ns	-
Turn-Off Fall Time	t _F	-	18	25	ns	-

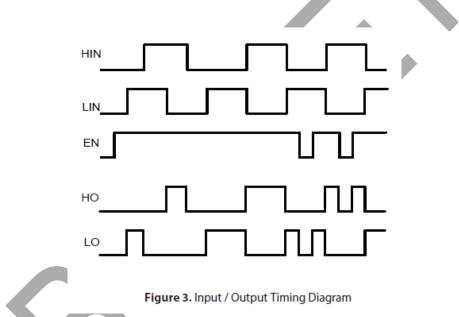

Timing Waveforms

Figure 1. Switching Time Waveform Definitions

Typical Performance Characteristics (@TA = +25°C, unless otherwise specified.)

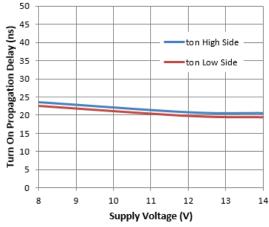


Figure 4. Turn-on Propagation Delay vs. Supply Voltage

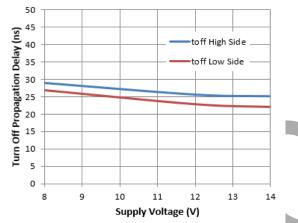
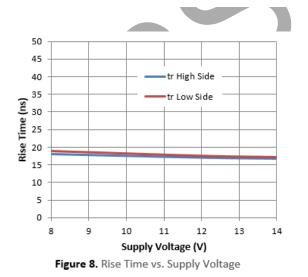



Figure 6. Turn-off Propagation Delay vs. Supply Voltage

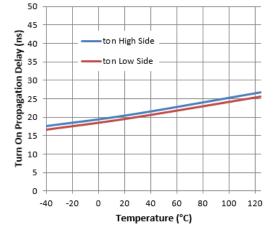
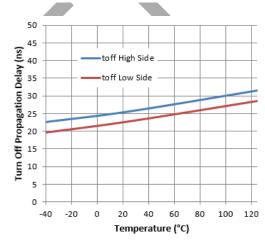
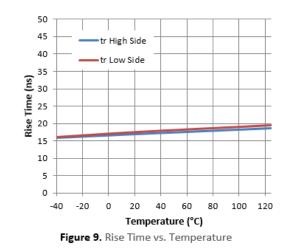
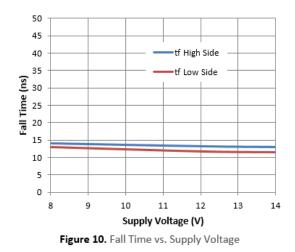
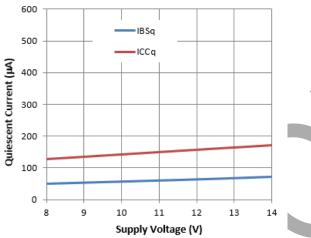
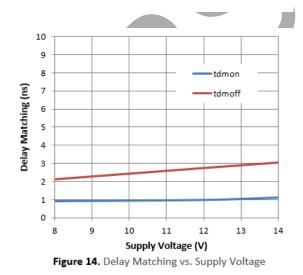


Figure 5. Turn-on Propagation Delay vs. Temperature


Figure 7. Turn-off Propagation Delay vs. Temperature



Typical Performance Characteristics (Cont.)

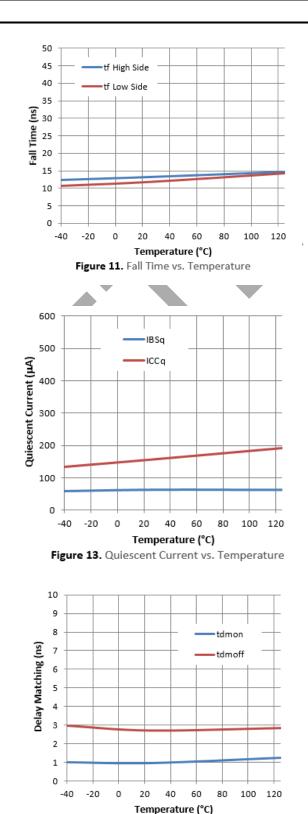


Figure 15. Delay Matching vs. Temperature

Typical Performance Characteristics (Cont.)

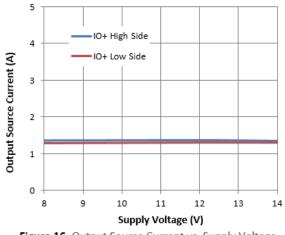


Figure 16. Output Source Current vs. Supply Voltage

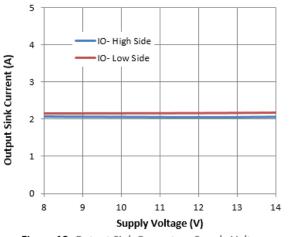


Figure 18. Output Sink Current vs. Supply Voltage

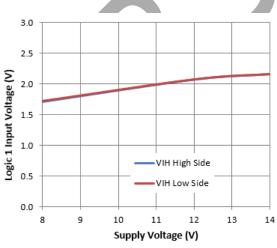


Figure 20. Logic 1 Input Voltage vs. Supply Voltage

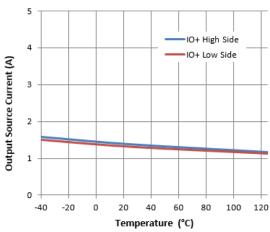
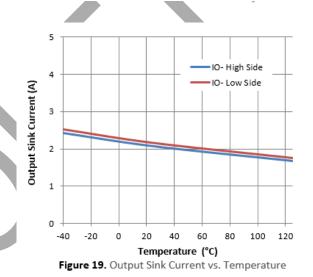
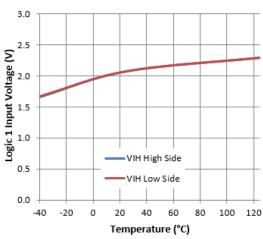
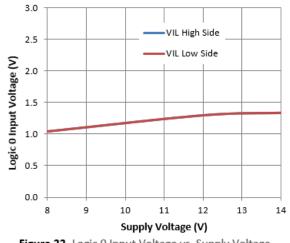
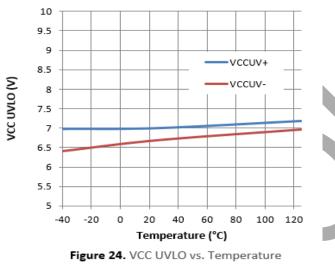



Figure 17. Output Source Current vs. Temperature


Figure 21. Logic 1 Input Voltage vs. Temperature

Typical Performance Characteristics (Cont.)

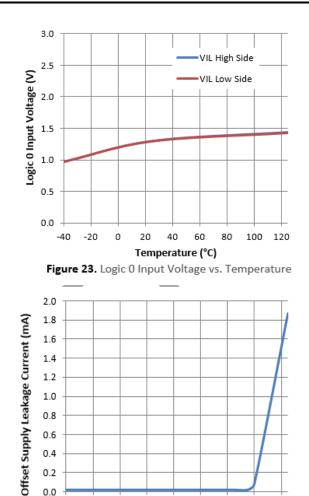


Figure 25. Offset Supply Leakage Current vs. Temperature

Temperature (°C)

60 80 100 120

20 40

0

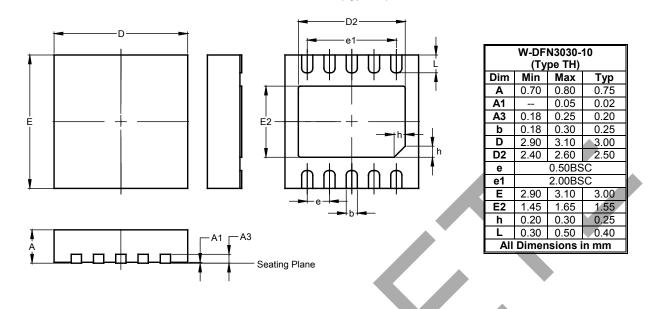
1.0

0.8

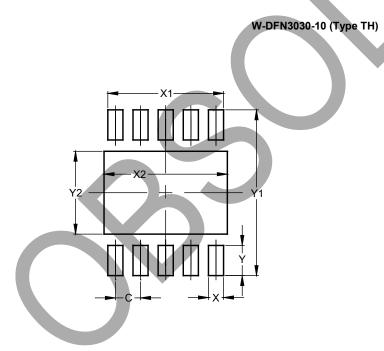
0.6

0.4 0.2

0.0


-40 -20

Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

W-DFN3030-10 (Type TH)

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dimensions	Value (in mm)				
С	0.500				
X	0.300				
X1	2.300				
X2	2.600				
Y	0.600				
Y1	3.300				
Y2	1.650				

IMPORTANT NOTICE

1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (<u>https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/</u>) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com