Description

The ZXTR1005K4 is a high voltage regulator with fixed output voltage of 5V ± 2% and a 50mA drive capability. It is designed for use in high voltage applications where standard linear regulators cannot be used. This function is fully integrated into a TO252 package, minimizing PCB area and reducing number of components when compared with a multi-chip discrete solution.

The device also features an enable pin which disables the regulator when pulled low.

Applications

Supply voltage regulation in:
- Networking
- Telecom
- Power Over Ethernet (PoE)

Features

- Series Linear Regulator Using Emitter-Follower Stage
- Input Voltage = 10 to 100V
- Output Voltage = 5V ± 2%
- ± 4% tolerance over -55 to +125°C
- Output Current up to 50mA
- Toggle Output On/Off with Enable pin
- Totally Lead-Free & Fully RoHS compliant (Notes 1 & 2)
- Halogen and Antimony Free. “Green” Device (Note 3)

Mechanical Data

- Case: TO252-4
- Case material: Molded Plastic. “Green” Molding Compound.
- UL Flammability Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish - Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208
- Weight: 0.34 grams (approximate)

Ordering Information (Note 4)

<table>
<thead>
<tr>
<th>Product</th>
<th>Package</th>
<th>Marking</th>
<th>Reel Size (inches)</th>
<th>Tape Width (mm)</th>
<th>Quantity per Reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZXTR1005K4-13</td>
<td>TO252-4</td>
<td>ZXR 1005</td>
<td>13</td>
<td>16</td>
<td>2,500</td>
</tr>
</tbody>
</table>

Notes:
1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
2. See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated’s definitions of Halogen- and Antimony-free, “Green” and Lead-free.
3. Halogen- and Antimony-free “Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Marking Information

ZXTR 1005 = Product Type Marking Code
YYWW = Date Code Marking
YY = Year (ex: 13 = 2013)
WW = Week (01-52)
Absolute Maximum Ratings

(Voltage relative to GND, \(TA = +25°C\), unless otherwise specified.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>-0.3 to 100</td>
<td>V</td>
</tr>
<tr>
<td>Enable Current</td>
<td>(I_{EN})</td>
<td>±1</td>
<td>mA</td>
</tr>
<tr>
<td>Continuous Input & Output Current</td>
<td>(I_{IN}, I_{OUT})</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Peak Pulsed Input & Output Current</td>
<td>(I_{IM}, I_{OM})</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>Maximum Voltage applied to (V_{OUT})</td>
<td>(V_{OUT(\text{max})})</td>
<td>10</td>
<td>V</td>
</tr>
</tbody>
</table>

Maximum Current

(\(V_{IN} = 48\,\text{V}, \ TA = +25°C\), unless otherwise specified.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Output Current</td>
<td>(I_{OUT})</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Pulsed Output Current</td>
<td>(I_{OM})</td>
<td>100</td>
<td>mA</td>
</tr>
</tbody>
</table>

Thermal Characteristics

(\(TA = +25°C\), unless otherwise specified.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation</td>
<td>(P_D)</td>
<td>2.3</td>
<td>W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Ambient</td>
<td>(R_{JA})</td>
<td>44</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Lead</td>
<td>(R_{JL})</td>
<td>90</td>
<td>°C/W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Case</td>
<td>(R_{JC})</td>
<td>8.39</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Operating Junction Temperature Range</td>
<td>(T_J)</td>
<td>-55 to +125</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_{STG})</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ESD Ratings

(Note 11)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symbols</th>
<th>Value</th>
<th>Unit</th>
<th>JEDEC Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic Discharge – Human Body Model</td>
<td>ESD HBM</td>
<td>4,000</td>
<td>V</td>
<td>3A</td>
</tr>
<tr>
<td>Electrostatic Discharge – Machine Model</td>
<td>ESD MM</td>
<td>400</td>
<td>V</td>
<td>C</td>
</tr>
</tbody>
</table>

Notes:
5. For a device mounted with the exposed \(V_{IN}\) pad on 50mm x 50mm 1oz copper that is on a single-sided 1.6mm FR4 PCB; device is measured under still air conditions whilst operating in steady-state.
6. Same as note 5, except mounted on 15mm x 15mm 1oz copper.
7. Same as note 5, whilst operating at \(V_{IN}=48\,\text{V}\) this is thermally limited. Refer to Safe Operating Area for other Input Voltages.
8. Same as note 5, except measured with a single pulse width = 100\,\mu s and \(V_{IN}=48\,\text{V}\). This is limited by the absolute maximum \(I_{OM}\) rating.
9. Same as note 5, except measured with a single pulse width = 10ms and \(V_{IN}=48\,\text{V}\). This is limited by the absolute maximum \(I_{OM}\) rating.
10. \(R_{JL}\) = Thermal resistance from junction to solder-point (on the exposed \(V_{IN}\) pad).
11. \(R_{JC}\) = Thermal resistance from junction to the top of case.
12. Refer to JEDEC specification JESD22-A114 and JESD22-A115.
Thermal Characteristics and Derating Information

Derating Curve

Continuous Output Current (mA)

Input Voltage (V)

Max Power Dissipation (W)

Steady state D.C. $T_A = 25°C$

Safe Operating Area

Safe Operating Area

15mm x 15mm 1oz Cu

50mm x 50mm 1oz Cu

100µ 1m 10m 100m 1 10 100 1k 10k

0 10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 90 100

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

Max Power Dissipation (W)

Max Power Dissipation (W)

Ambient Temperature (°C)

50mm x 50mm 1oz Cu

D=0.5

D=0.2

D=0.1

D=0.05

Pulse Width (s)

Pulse Width (s)

100µ 1m 10m 100m 1 10 100 1k 10k

100µ 1m 10m 100m 1 10 100 1k 10k

0 0.5 1 1.5 2 2.5 3

0 0.5 1 1.5 2 2.5 3

Thermal Resistance (°C/W)

Transient Thermal Impedance

Transient Thermal Impedance

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

100µ 1m 10m 100m 1 10 100 1k 10k

100µ 1m 10m 100m 1 10 100 1k 10k

Thermal Resistance (°C/W)

Pulse Power Dissipation

Pulse Power Dissipation

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

100µ 1m 10m 100m 1 10 100 1k 10k

100µ 1m 10m 100m 1 10 100 1k 10k

Max Power Dissipation (W)

Max Power Dissipation (W)

Electrical Characteristics (Voltage relative to GND, @TA = +25°C, unless otherwise specified.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage (Note 12)</td>
<td>VOUT</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1</td>
<td>V</td>
<td>VIN = 48V, IOUT = 15mA</td>
</tr>
<tr>
<td>Line Regulation (Note 12 & 13)</td>
<td>ΔVOUT</td>
<td>-10</td>
<td>2</td>
<td>10</td>
<td>mV</td>
<td>VIN = 10 to 100V, IOUT = 15mA</td>
</tr>
<tr>
<td>Average Temperature Coefficient</td>
<td>ΔVOUT/ΔT</td>
<td>—</td>
<td>0.44</td>
<td>0.7</td>
<td>mV/°C</td>
<td>TJ = -55°C to +125°C</td>
</tr>
<tr>
<td>Load Regulation (Note 12 & 14)</td>
<td>ΔVOUT</td>
<td>—</td>
<td>20</td>
<td>50</td>
<td>mV</td>
<td>IOUT = 0.1 to 50mA, VIN = 48V</td>
</tr>
<tr>
<td>Minimum Value of Input Voltage Required to Maintain Line Regulation</td>
<td>V_MINMIN</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>Power Supply Rejection Ratio</td>
<td>ΔVIN/ΔVOUT</td>
<td>—</td>
<td>57</td>
<td>—</td>
<td>dB</td>
<td>COUT = 100nF, IOUT = 15mA, VIN = 10 to 100V, f = 100Hz</td>
</tr>
</tbody>
</table>

Enable Output with EN = OPEN (i.e. -100nA < IEN < 100nA)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Output</td>
<td>VOUT</td>
<td>4.9</td>
<td>5.0</td>
<td>5.1</td>
<td>V</td>
<td>EN = OPEN, -100nA < IEN < 100nA, VIN = 48V, IOUT = 15mA</td>
</tr>
<tr>
<td>Disable Output</td>
<td>VOUT</td>
<td>—</td>
<td>0</td>
<td>1</td>
<td>V</td>
<td>EN = GND, -0.3V < VEN < 1V, VIN = 48V, IOUT = 100nA</td>
</tr>
<tr>
<td>Quiescent Current (Note 12) with Enable Output</td>
<td>IQ</td>
<td>—</td>
<td>300</td>
<td>500</td>
<td>µA</td>
<td>EN = OPEN, VIN = 48V</td>
</tr>
<tr>
<td>Quiescent Current (Note 12) with Disable Output</td>
<td>IQ</td>
<td>—</td>
<td>300</td>
<td>500</td>
<td>µA</td>
<td>EN = GND, VIN = 48V</td>
</tr>
</tbody>
</table>

Notes:
12. Measured under pulsed conditions. Pulse width ≤ 300µs. Duty cycle ≤ 2%.
13. Line regulation ΔVOUT = VOUT(@VIN = 100V) – VOUT(@VIN = 10V)
14. Load regulation ΔVOUT = VOUT(@IOUT = 50mA) – VOUT(@IOUT = 0mA)

Pin Functions

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>Input Supply</td>
<td>To maintain output regulation the input voltage can vary from 10 to 100V with respect to the GND pin. It is recommended to connect a 1µF capacitor to GND.</td>
</tr>
<tr>
<td>GND</td>
<td>Power Ground</td>
<td>This pin should be tied to the system ground.</td>
</tr>
<tr>
<td>VOUT</td>
<td>Voltage Output</td>
<td>Outputs a regulated 5V when drawing between 0.1 to 50mA current. It is recommended to connect a ≥100nF capacitor to GND to minimize the noise on the regulated output. The pin can be pulled high to a maximum of 10V with respect to ground.</td>
</tr>
</tbody>
</table>
| EN | Enable Output | Output Always On
When the output state is required to be permanently on, then the EN pin should be left floating in an OPEN state. EN pin = Do not connect
Toggle Output On/Off
Toggle the regulator's output state between on (5V) and off (0V).
Enable Output
Leave the EN pin floating in an OPEN state. Enable Output
EN pin = -100nA < IEN < 100nA
Disable Output
Pull the EN pin to GND in a SHORT state. Disable Output
EN pin = -0.3V < VEN < 1V |

ZXTR1005K4
Datasheet number: DS36315 Rev. 1–2
www.diodes.com
January 2014
© Diodes Incorporated
Typical Application Circuit

Example of a 5V regulated supply from a nominal 48V for powering a Controller IC.
Typical Electrical Characteristics (@Ta = +25°C, unless otherwise specified.)

Line transient response

- Input Voltage (V) vs. Time
- Output Voltage (V) vs. Time
- V_out = 18 to 48V
- Slew Rate = 5V/μs
- C_out = 1μF
- I_out = 15mA

Load transient response

- Output Voltage (mV) vs. Current (mA)
- I_out = 0 to 50mA
- Slew Rate = 1A/μs
- C_out = 1μF
- V_in = 18V

Line Regulation (Note 15)

- Output Voltage (mV) vs. Input Voltage (V)
- Temperature Coefficient (°C)
- V_out = 18 to 48V
- I_out = 15mA
- T_J = -55°C to 125°C

Load Regulation (Note 16)

- Output Voltage (mV) vs. Output Current (mA)
- Temperature Coefficient (°C)
- V_in = 48V
- I_out = 15mA
- T_J = -55°C to 125°C

Temperature Coefficient (Note 17)

- Quiescent Current (μA) vs. Junction temperature (°C)
- Temperature Coefficient (°C)
- V_in = 48V
- I_out = 15mA

Notes:
15. Line regulation ΔV_OUT = V_OUT – V_OUT(@ V_IN = 10V, I_OUT = 15mA, T_J = +25°C)
16. Load regulation ΔV_OUT = V_OUT – V_OUT(@ V_IN = 48V, I_OUT = 0A, T_J = +25°C)
17. Temperature Coefficient ΔV_OUT = V_OUT – V_OUT(@ V_IN = 48V, I_OUT = 30mA, T_J = +25°C)
Package Outline Dimensions

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

<table>
<thead>
<tr>
<th>Dim</th>
<th>Min</th>
<th>Max</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.19</td>
<td>2.39</td>
<td>2.29</td>
</tr>
<tr>
<td>A1</td>
<td>0.00</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>A2</td>
<td>0.97</td>
<td>1.17</td>
<td>1.07</td>
</tr>
<tr>
<td>b</td>
<td>0.51</td>
<td>0.71</td>
<td>0.583</td>
</tr>
<tr>
<td>b1</td>
<td>0.61</td>
<td>0.79</td>
<td>0.70</td>
</tr>
<tr>
<td>b2</td>
<td>5.21</td>
<td>5.46</td>
<td>5.33</td>
</tr>
<tr>
<td>c2</td>
<td>0.45</td>
<td>0.58</td>
<td>0.531</td>
</tr>
<tr>
<td>D</td>
<td>6.00</td>
<td>6.20</td>
<td>6.10</td>
</tr>
<tr>
<td>D1</td>
<td>5.21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>6.45</td>
<td>6.70</td>
<td>6.58</td>
</tr>
<tr>
<td>E1</td>
<td>4.32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H</td>
<td>9.40</td>
<td>10.41</td>
<td>9.91</td>
</tr>
<tr>
<td>L</td>
<td>1.40</td>
<td>1.78</td>
<td>1.59</td>
</tr>
<tr>
<td>L3</td>
<td>0.88</td>
<td>1.27</td>
<td>1.08</td>
</tr>
<tr>
<td>L4</td>
<td>0.64</td>
<td>1.02</td>
<td>0.83</td>
</tr>
<tr>
<td>a</td>
<td>0°</td>
<td>10°</td>
<td>-</td>
</tr>
</tbody>
</table>

All Dimensions in mm

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Value (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>1.27</td>
</tr>
<tr>
<td>c1</td>
<td>2.54</td>
</tr>
<tr>
<td>X</td>
<td>1.00</td>
</tr>
<tr>
<td>X1</td>
<td>5.73</td>
</tr>
<tr>
<td>Y</td>
<td>2.00</td>
</tr>
<tr>
<td>Y1</td>
<td>6.17</td>
</tr>
<tr>
<td>Y2</td>
<td>1.64</td>
</tr>
<tr>
<td>Y3</td>
<td>2.66</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:
 1. are intended to implant into the body, or
 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com