ZXCT1021
Low offset high-side current monitor

Description
The ZXCT1021 is a precision high-side current sense monitor. Using this type of device eliminates the need to disrupt the ground plane when sensing a load current.

The ZXCT1021 provides a fixed gain of 10 for applications where minimal sense voltage is required.

The very low offset voltage enables a typical accuracy of 3% for sense voltages of only 10mV, giving better tolerances for small sense resistors necessary at higher currents.

The wide input voltage range of 20V down to as low as 2.5V make it suitable for a range of applications. With a minimum operating current of just 25µA, combined with its SOT23-5 package make it suitable for portable battery equipment too.

Features
• Accurate high-side current sensing
• Output voltage scaling
• 2.5V – 20V supply range
• 25µA quiescent current
• 1% typical accuracy
• SOT23-5 package

Applications
• Battery chargers
• Smart battery packs
• DC motor control
• Over current monitor
• Power management
• Level translating
• Programmable current source

Pinout information

Typical application circuit

Ordering information

<table>
<thead>
<tr>
<th>Order reference</th>
<th>Package</th>
<th>Device marking</th>
<th>Status</th>
<th>Reel size (inches)</th>
<th>Quantity per reel</th>
<th>Tape width (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZXCT1021E5TA</td>
<td>SOT23-5</td>
<td>1021</td>
<td>Released</td>
<td>7</td>
<td>3000</td>
<td>8</td>
</tr>
</tbody>
</table>
Absolute maximum ratings

Voltage on any pin with respect to END pin -0.6V to 20V

V\textsubscript{SENSE} -0.6V to \(V\text{IN} +0.5V\)

Operating temperature -40 to 85°C

Storage temperature -55 to 150°C

Package power dissipation (\(T\text{amb} = 25°C\)) 300mW

Pinout information

<table>
<thead>
<tr>
<th>Pin name</th>
<th>Pin function</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/C</td>
<td>Not internally connected</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>V\text{OUT}</td>
<td>Voltage output referenced to GND. Intended to drive high impedance loads</td>
</tr>
<tr>
<td>V\textsubscript{SENSE}-</td>
<td>High impedance negative sense voltage input</td>
</tr>
<tr>
<td>V\textsubscript{SENSE}+</td>
<td>Supply and positive sense voltage input</td>
</tr>
</tbody>
</table>
Electrical characteristics test conditions $T_{amb} = 25^\circ C$, $V_{IN} = 15V$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Limits</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>V_{CC} range</td>
<td></td>
<td>Min.</td>
<td>Typ.</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>Output voltage</td>
<td>$V_{SENSE} = 30mV$</td>
<td>291</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SENSE} = 100mV$</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SENSE} = 150mV$</td>
<td>1.47</td>
<td>1.50</td>
</tr>
<tr>
<td>R_{OUT}</td>
<td>Output resistance</td>
<td></td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>T_C (*)</td>
<td>Output voltage temperature coefficient</td>
<td></td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>I_Q</td>
<td>Ground pin current</td>
<td>$V_{SENSE} = 0V$</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>V_{SENSE} (†)</td>
<td>Sense voltage</td>
<td>$V_{IN} = 20V$</td>
<td>0</td>
<td>1.5 (‡)</td>
</tr>
<tr>
<td>I_{LOAD}</td>
<td>V_{SENSE}, load pin input current</td>
<td>$V_{SENSE} = 0V$</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Acc</td>
<td>Accuracy</td>
<td>$V_{SENSE} = 100mV$</td>
<td>-2</td>
<td>2</td>
</tr>
<tr>
<td>Gain</td>
<td>V_{OUT} / V_{SENSE}</td>
<td>$V_{SENSE} = 100mV$</td>
<td>9.8</td>
<td>10</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
<td>$V_{SENSE} = 10mV$</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{SENSE} = 100mV$</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

(*) T_C limits are determined by characterization

(†) $V_{SENSE} = V_{IN} - V_{LOAD}$

(‡) This will be reduced at lower V_{IN} voltages due to clipping of output voltage.
Typical characteristics

Typical Output vs Sense Voltage

Output Voltage vs Temperature

Frequency Response

Transfer Characteristic

Common Mode Rejection
Typical characteristics

Small Signal Step Response

Large Signal Step Response

Isupply v Temperature

Isupply v Vtemp

Supply Current (μA)

Temperature °C

Supply Current (μA)

V SENSE (mV)

T = 25 °C
Application information

The ZXCT1021 has a fixed dc voltage gain of 100. No external scaling resistors are required for the output. Output voltage is simply defined as:

\[
V_{\text{OUT}} = 10 \times V_{\text{SENSE}} \text{ (V)}
\]

Where \(V_{\text{SENSE}} = V_{\text{IN}} - V_{\text{LOAD}} \)

PCB trace shunt resistor for low cost solution

Figure 1 shows a PCB layout suggestion for a low cost solution where a PCB resistive trace in replacement for a conventional shunt resistor, can be used. The resistor section is 25mm x 0.25mm giving approximately 150m\(\Omega\) using 1 oz copper. Smaller resistances can be used if required.

Total circuit solution: 1 component. Shows area of 150m\(\Omega\) sense resistor compared to SOT23 package.

Practical tolerance of the PCB resistor will be around 5% depending on manufacturing methods.
Package outline - SOT23-5

<table>
<thead>
<tr>
<th>DIM</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Max.</td>
</tr>
<tr>
<td>A</td>
<td>0.90</td>
<td>1.45</td>
</tr>
<tr>
<td>A1</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>A2</td>
<td>0.90</td>
<td>1.30</td>
</tr>
<tr>
<td>b</td>
<td>0.20</td>
<td>0.50</td>
</tr>
<tr>
<td>C</td>
<td>0.09</td>
<td>0.26</td>
</tr>
<tr>
<td>D</td>
<td>2.70</td>
<td>3.10</td>
</tr>
<tr>
<td>E</td>
<td>2.20</td>
<td>3.20</td>
</tr>
<tr>
<td>E1</td>
<td>1.30</td>
<td>1.80</td>
</tr>
<tr>
<td>e</td>
<td>0.95 REF</td>
<td>0.0374 REF</td>
</tr>
<tr>
<td>e1</td>
<td>1.90 REF</td>
<td>0.0748 REF</td>
</tr>
<tr>
<td>L</td>
<td>0.10</td>
<td>0.60</td>
</tr>
<tr>
<td>a°</td>
<td>0°</td>
<td>30°</td>
</tr>
</tbody>
</table>

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches.
Definitions

Product change
Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer
The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user’s application and meets with the user’s requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support
Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:
A. Life support devices or systems are devices or systems which:
 1. are intended to implant into the body
 or
 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labelling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction
The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions
All products are sold to Zetex’ terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

Quality of product
Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.

ESD (Electrostatic discharge)
Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

Green compliance
Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

Zetex Semiconductors is supporting its customers in their compliance with WEEE and ELV directives.

Zetex sales offices

Europe
Zetex GmbH
Kustermann-park
Balanstraße 59
D-81541 München
Germany
Telefon: (49) 89 45 49 49 0
Fax: (49) 89 45 49 49 49

Americas
Zetex Inc
700 Veterans Memorial Highway
Hauppauge, NY 11788
USA
Telephone: (1) 631 360 2222
Fax: (1) 631 360 8222

Asia Pacific
Zetex (Asia Ltd)
3791-04 Metroplaza Tower 1
Hung Fong Road, Kwai Fong
Hong Kong
Telephone: (852) 26100 611
Fax: (852) 24250 494

Corporate Headquarters
Zetex Semiconductors plc
Zetex Technology Park, Chadderton
Oldham, OL9 9LL
United Kingdom
Telephone: (44) 161 622 4444
Fax: (44) 161 622 4446
hq@zetex.com

© 2007 Published by Zetex Semiconductors plc

Issue 9 - July 2007 8 www.zetex.com