ZXCT1011
High-side low drift current monitor

Description
The ZXCT1011 is a high side current sense monitor. Using this type of device eliminates the need to disrupt the ground plane when sensing a load current.
The ZXCT1011 takes the voltage developed across a current shunt resistor and translates it into a proportional output current.
A user defined output resistor scales the output current into a ground referenced voltage.
A current reference resistor, external to the IC, results in an improved temperature coefficient compared to the ZXCT1009.
The wide input voltage range of 20V down to as low as 2.5V make it suitable for a range of applications. With a minimum operating current of just 4μA, combined with its SOT23-5 package make it suitable for portable battery equipment too.

Features
■ Accurate high-side current sensing
■ 2.5V to 20V supply range
■ 4 μA quiescent current
■ 1% typical accuracy
■ Package SOT23-5
■ Temperature range -40 to 125°C

Applications
■ Automotive current measurement
■ Battery management
■ DC motor and solenoid control
■ Over current monitor
■ Power management

Typical application circuit

Ordering information

<table>
<thead>
<tr>
<th>Order code</th>
<th>Pack</th>
<th>Part mark</th>
<th>Reel Size inches (mm)</th>
<th>Tape width</th>
<th>Quantity Per reel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZXCT1011E5TA</td>
<td>SOT23-5</td>
<td>1011</td>
<td>7 (180)</td>
<td>8mm</td>
<td>3,000</td>
</tr>
</tbody>
</table>
Absolute maximum ratings

- \(V_{\text{sense}+} \) 20 V
- Voltage on any pin 0.6V and \(V_{\text{sense}+} +0.5V \)
- \(V_{\text{sense}+} \) to \(V_{\text{sense}-} \) 2.5V
- Operating temperature -40 to 125°C
- Storage temperature -55 to 150°C
- Maximum junction temperature 150°C
- Package power dissipation 300mW at \(T_A = 25°C \) (De-rate to zero at 150°C)

Operation above the absolute maximum rating may cause device failure. Operation at the absolute maximum ratings, for extended periods, may reduce device reliability.

Electrical characteristics

Test conditions \(T_A = 25°C \), \(V_{\text{in}} = 5V \), \(I_{\text{shunt}} = 120\Omega \). \(V_{\text{sense}} = 100mV \). Unless otherwise stated.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{in}})</td>
<td>Supply range</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>(I_{\text{out}})</td>
<td>Output current</td>
<td>(V_{\text{sense}} = 0V) (=10mV) (=30mV) (=100mV) (=200mV) (=500mV)</td>
<td>1</td>
<td>84</td>
<td>273</td>
<td>0.97</td>
</tr>
<tr>
<td>(V_{\text{sense}})</td>
<td>Sense voltage†</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>500</td>
<td>mV</td>
</tr>
<tr>
<td>(I_{\text{sense}})</td>
<td>Input current</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>Acc</td>
<td>Accuracy</td>
<td>(R_{\text{sense}} = 0.1\Omega) (V_{\text{sense}} = 100mV)</td>
<td>-3</td>
<td>-</td>
<td>3</td>
<td>%</td>
</tr>
<tr>
<td>(g_{m})</td>
<td>Transconductance</td>
<td>(I_{\text{out}}/V_{\text{sense}}) (R_{\text{shunt}} = 120\Omega)</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>mA/V</td>
</tr>
<tr>
<td>(T_{c})</td>
<td>Temperature coefficient‡</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>150</td>
<td>ppm/°C</td>
</tr>
<tr>
<td>BJ**</td>
<td>Bandwidth</td>
<td>(V_{\text{sense}} = 10mV) (CL = 5pF) (R_{\text{out}} = 1k\Omega) (V_{\text{sense}} = 100mV) (CL = 5pF) (R_{\text{out}} = 1k\Omega)</td>
<td>-</td>
<td>400</td>
<td>1.5</td>
<td>kHz MHz</td>
</tr>
<tr>
<td>PSSR</td>
<td>Supply rejection</td>
<td>(V_{\text{sense}} = 200mV) (R_{\text{out}} = 1k\Omega)</td>
<td>-</td>
<td>68</td>
<td>-</td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTES:

* \(V_{\text{sense}} \), relative to \(I_{\text{out}} \).
† \(V_{\text{sense}} = (V_{\text{sense}+} - V_{\text{sense}-}) \).
‡ Temperature dependent measurements are extracted from characterization and simulation results.
** Where \(CL \) is the capacitance across \(R_{\text{out}} \).
Typical characteristics

\(T_A = 25^\circ C, R_{\text{shunt}} = 120 \) \(\Omega \) unless otherwise stated.
Typical characteristics

\(T_A = 25^\circ C, \ R_{\text{shunt}} = 120 \) unless otherwise stated.
Pin description

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Pin name</th>
<th>Pin function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N/C</td>
<td>No connection</td>
</tr>
<tr>
<td>2</td>
<td>I<sub>out</sub></td>
<td>Output current - follows transconductance of sense voltage g<sub>m</sub> = 10mA/V for R<sub>shunt</sub>=120Ω</td>
</tr>
<tr>
<td>3</td>
<td>R<sub>shunt</sub></td>
<td>Trimming resistor Input. - used to trim gain value 60Ω ≤ R<sub>shunt</sub> ≤ 240Ω</td>
</tr>
<tr>
<td>4</td>
<td>V<sub>sense-</sub></td>
<td>Low side current sense input. – connect to load/battery etc. Must be lower than V<sub>sense+</sub> for correct operation. Cannot be grounded without additional series resistor.</td>
</tr>
<tr>
<td>5</td>
<td>V<sub>sense+</sub></td>
<td>High side current sense input. – Connect to supply rail. Must be higher than V<sub>sense+</sub> for correct operation.</td>
</tr>
</tbody>
</table>

Application information

Design example

The following lines describe how to scale a load current to an output voltage.

\[
V_{\text{sense}} = (V_{\text{sense+}} - (V_{\text{sense-}}) = I_{\text{load}} \times R_{\text{sense}}
\]

Defining then since

\[
I_{\text{out}} = I_{\text{q}} + V_{\text{sense}} \times g_{\text{m}}
\]

\[
g_{\text{m}} = 1.2 / R_{\text{shunt}}
\]

\[
I_{\text{out}} = I_{\text{q}} + \left(V_{\text{sense}} \times 1.2 \right) / R_{\text{shunt}}
\]

\[
= I_{\text{q}} + \left[(1.2 \times I_{\text{load}} \times R_{\text{sense}} / R_{\text{shunt}}) \right]
\]

Note: Iq is embedded into the specification of the ZXCT1011 and therefore appears an offset error.

\[
V_{\text{out}} = (R_{\text{out}} \times I_{\text{offset}}) + \left[(1.2 \times R_{\text{out}} \times I_{\text{load}} \times R_{\text{sense}}) / R_{\text{shunt}} \right]
\]

The output current of the ZXCT1011 is directly related to the size of the trimming resistor used. It is important to ensure the tolerance of R_{shunt} is considered. A 1% change in R_{shunt} will cause a 1% change in output.

Consider the following: -
A 1 ampere load current is to be measured into a battery. The output signal required to an over current controller needs to be 3.3V. What is a suitable value of R_{out} and what will the error due to the supply current be?

$V_{in} = 5.0V - 9.0V$

$I_{load} = 1.0A$

Output signal required: 3.3V

Figure 1 ZXCT1011 to measure a 1.0 A load current

To obtain the highest accuracy, choose the of R_{sense} to give 100mV:

$$R_{sense} = \frac{0.1}{1.0} = 0.1\Omega$$

The transconductance using a 120Ω resistor will be 10mA/V.

Choose R_{out} to give $V_{out} = 3.3V$, when $V_{sense} = 100mV$

Rearranging equation 1 without the offset error gives:

$$R_{out} = \frac{V_{out} \times R_{shunt}}{(1.2 \times I_{Load} \times R_{sense})}$$

$$R_{out} = 3.3k\Omega$$

Now consider the offset error for this resistor:

Offset due to supply current = $R_{out} \times 4 \times 10^{-6} \mu A = 13.2mV = 0.4\%$
Application information (cont.)

Minimum operating voltage

The minimum operating voltage of the ZXCT1011 is 2.5V and is defined as the difference between V_{sense^+} and the I_{out} pin. It must be ensured that sufficient headroom is given for the operation of the device when considering R_{out}.

![Circuit diagram](image)

Figure 2 Considerations for supply rail

Voltage across device 2.5V

$V_{\text{in}} - V_{\text{out}} = 2.5V$

Where $V_{\text{out}} = I_{\text{out}} \times R_{\text{out}}$

At low supply voltages and high Vsense measurements, special care must be taken to ensure the correct operation.

The circuit in figure 2.0 shows a ZXCT1011 operating from 10V supply rail. The minimum operating voltage of the ZXCT1011 is 2.5V. This allows a maximum output voltage of 7.5V to be set at V_{out}. A 3k resistor on the output would draw a maximum 2.5mA from I_{out}. - See minimum usable supply voltage graph on page 4.
These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Issue 1 - July 2005 8 www.zetex.com

© Zetex Semiconductors plc 2005