NPN SILICON PLANAR MEDIUM POWER DARLINGTON TRANSISTORS

FEATURES
- 160 Volt V_{CEO}
- 1 Amp continuous current
- Gain of 5K at $I_C=1$ Amp
- $P_{tot}=1$ Watt

ABSOLUTE MAXIMUM RATINGS.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>ZTX600</th>
<th>ZTX601</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Base Voltage</td>
<td>V_{CBO}</td>
<td>160</td>
<td>180</td>
<td>V</td>
</tr>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CEO}</td>
<td>140</td>
<td>160</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>V_{EBO}</td>
<td>10</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Peak Pulse Current</td>
<td>I_{CM}</td>
<td>4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Continuous Collector Current</td>
<td>I_C</td>
<td>1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation at $T_{amb}=25°C$ derate above 25°C</td>
<td>P_{tot}</td>
<td>1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Operating and Storage Temperature Range</td>
<td>T_J/T_{stg}</td>
<td>-55 to +200</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (at $T_{amb}=25°C$ unless otherwise stated).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>ZTX600</th>
<th>ZTX601</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Base Breakdown Voltage</td>
<td>V_{BRCBO}</td>
<td>160</td>
<td>180</td>
<td>V</td>
</tr>
<tr>
<td>Collector-Emitter Breakdown Voltage</td>
<td>V_{BRCCEO}</td>
<td>140</td>
<td>160</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-Base Breakdown Voltage</td>
<td>V_{BREBO}</td>
<td>10</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Collector Cut-Off Current</td>
<td>I_{CEO}</td>
<td>0.01</td>
<td>0.01</td>
<td>μA</td>
</tr>
<tr>
<td>Emitter Cut-Off Current</td>
<td>I_{EBO}</td>
<td>0.1</td>
<td>0.1</td>
<td>μA</td>
</tr>
<tr>
<td>Collector-Emitter Cut-Off Current</td>
<td>I_{CES}</td>
<td>10</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>Collector-Emitter Saturation Current</td>
<td>$I_{CE(sat)}$</td>
<td>0.75</td>
<td>0.85</td>
<td>μA</td>
</tr>
<tr>
<td>Base-Emitter Saturation Voltage</td>
<td>$V_{BE(sat)}$</td>
<td>1.7</td>
<td>1.9</td>
<td>V</td>
</tr>
<tr>
<td>Base-Emitter Turn-On Voltage</td>
<td>$V_{BE(on)}$</td>
<td>1.5</td>
<td>1.7</td>
<td>V</td>
</tr>
</tbody>
</table>

The maximum permissible operational temperature can be obtained from this graph using the following equation:

$$T_{amb(min)} = \frac{Power(max) - Power(act)}{0.0057} - 25°C$$

$T_{amb(max)}$ = Maximum operating ambient temperature
$Power(max)$ = Maximum power dissipation figure, obtained from the above graph for a given V_{CE} and source resistance (R_S)
Power(actual) = Actual power dissipation in users circuit

ELECTRICAL CHARACTERISTICS (at $T_{amb}=25°C$ unless otherwise stated).

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>ZTX600</th>
<th>ZTX601</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Base Voltage</td>
<td>V_{CBO}</td>
<td>160</td>
<td>180</td>
<td>V</td>
</tr>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CEO}</td>
<td>140</td>
<td>160</td>
<td>V</td>
</tr>
<tr>
<td>Emitter-Base Voltage</td>
<td>V_{EBO}</td>
<td>10</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Peak Pulse Current</td>
<td>I_{CM}</td>
<td>4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Continuous Collector Current</td>
<td>I_C</td>
<td>1</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Power Dissipation at $T_{amb}=25°C$ derate above 25°C</td>
<td>P_{tot}</td>
<td>1</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Power Derating Graph</td>
<td>DC Conditions</td>
<td>Maximum Power Dissipation (W)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage Derating Graph

The maximum permissible operational temperature can be obtained from this graph using the following equation:

$$T_{amb(min)} = \frac{Power(max) - Power(act)}{0.0057} - 25°C$$

$T_{amb(max)}$ = Maximum operating ambient temperature
$Power(max)$ = Maximum power dissipation figure, obtained from the above graph for a given V_{CE} and source resistance (R_S)
Power(actual) = Actual power dissipation in users circuit
NPN SILICON PLANAR MEDIUM POWER DARLINGTON TRANSISTORS

FEATURES
* 160 Volt VCEO
* 1 Amp continuous current
* Gain of 5K at IC=1 Amp
* Ptot=1 Watt

ABSOLUTE MAXIMUM RATINGS.

PARAMETER SYMBOL UNIT CONDITIONS.
Collector-Base Voltage VCEO 160 V
Collector-Emitter Voltage VCEO 160 V
Emitter-Base Voltage VEB 10 V
Peak Pulse Current IC=1A
Continuous Collector Current IC 1 A
Power Dissipation at Tamb=25°C Ptot 1 W
Operating and Storage Temperature Range Tj>Tstg -55 to +200 °C

ELECTRICAL CHARACTERISTICS (at Tamb = 25°C unless otherwise stated).

PARAMETER SYMBOL UNIT CONDITIONS.
Collector-Base Breakdown Voltage V(BR)CEO 140 V IC=10mA
Collector-Emitter Breakdown Voltage V(BR)CEO 160 V IC=10mA
Emitter-Base Breakdown Voltage V(BR)EBO 10 V IE=100µA
Collector Cut-Off Current ICBO 100µA
Emitter Cut-Off Current ICEBO 100µA
Collector Emitter Saturation Voltage VCE(sat) IC=0.5A, IB=5mA
Base Emitter Saturation Voltage VBE(sat) IB=5mA IC=0.5A
Base Emitter Turn-On Voltage VBE(on) IC=0.5A

ELECTRICAL CHARACTERISTICS (at Tamb = 25°C unless otherwise stated).

PARAMETER SYMBOL UNIT CONDITIONS.
Collector-Base Voltage VIBRCEBO 160 V IC=0.5A, VCE=10V
Collector-Emitter Voltage VIBRCEO 160 V IC=0.5A, VCE=10V
Emitter-Base Voltage VIBEBO 10 V IC=0.5A, VCE=10V
Peak Pulse Current IC 100µA
Continuous Collector Current IC 100µA
Power Dissipation at Tamb=25°C Ptot 0.01 W
Operating and Storage Temperature Range Tj>Tstg -55 to +200 °C

The maximum permissible operational temperature can be obtained from this graph using the following equation

\[T_{\text{amb(max)}} = \frac{\text{Power(max)} - \text{Power(act)}}{0.0057} - 25°C \]

where
- Power(max) = Maximum power dissipation figure, obtained from the above graph for a given VCE
- Power(act) = Actual power dissipation in users circuit

ZTX600
ZTX601

E Line
TO92 Compatible
TYPICAL CHARACTERISTICS

VCE(sat) v Ic

Ic - Collector Current (Amps)

VCE(sat) - Collector Voltage (Volts)

Safe Operating Area

VBE(sat) v Ic

VBE(on) v Ic

hFE v Ic

VCE = 10V

VCE = 5V

D.C.

1s

100ms

10ms

1.0ms

0.1ms

0.001

IC/IB = 100

IC/IB = 1000

Group A

Group B