ZNI1000
Temperature sensor

Description
The ZNI1000 is a Ni thin film Resistance Temperature Detector (RTD), specified to DIN 43760. The high temperature coefficient offers higher signal outputs than other RTD’s, which results in higher accuracy with smaller temperature changes.

Features
• Resistance at 0°C: 1000
• Nickel temperature detector
• Specified to DIN 43760
• SOT23 package

Applications
• Automotive electronic
• Circuit protection
• Temperature compensation
• Temperature measurement

Ordering information

<table>
<thead>
<tr>
<th>Device</th>
<th>Reel size (inches)</th>
<th>Tape width (mm)</th>
<th>Quantity per reel</th>
<th>Device marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNI1000TA</td>
<td>7</td>
<td>8</td>
<td>3,000</td>
<td>ZNI</td>
</tr>
<tr>
<td>ZNI1000TC</td>
<td>13</td>
<td>8</td>
<td>10,000</td>
<td>ZNI</td>
</tr>
</tbody>
</table>

Pinout - top view
Pin 1 - Ni1000
Pin 2 - Ni1000
Pin 3 - Need a good thermal contact for short response time
Absolute maximum ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous current(a)</td>
<td>I_{CC}</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{TOT}</td>
<td>20</td>
<td>mW</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>T_A</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>T_{stg}</td>
<td>-55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
(a) Limited by operating temperature \[I_{CC} \leq (20 \text{mW}/R)^{1/2}, R=\text{func}(T_A)=718 \text{ to } 1986 \Omega \].

Recommended operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{MDC}</td>
<td>Steady state measurement current(b)</td>
<td>0,1</td>
<td>1,2</td>
<td>3,0</td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTES:
(b) limited by self heating effects (recommended current range 0,1 to 1,5mA)
\[\text{typ. case} \rightarrow \text{temperature error } \Delta T=\frac{R \cdot 1,2 \text{mA} \cdot 1,2 \text{mA}}{1,7 \text{mW/K}} \leq 1,7 \text{K} \]
\[\text{worst case} \rightarrow \text{temperature error } \Delta T=\frac{1,986 \text{k} \cdot 3,0 \text{mA} \cdot 3,0 \text{mA}}{1,4 \text{mW/K}} = 13,8 \text{K} \].

Electrical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>Resistance 0°C</td>
<td>$T=0^\circ \text{C}, I_M < 1 \text{mA}$</td>
<td>-</td>
<td>1000</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>R25</td>
<td>Resistance 25°C</td>
<td>$T=25^\circ \text{C}, I_M = 3 \text{mA}^{(c)}$</td>
<td>1100</td>
<td>1141</td>
<td>1200</td>
<td>Ω</td>
</tr>
<tr>
<td>R100</td>
<td>Resistance 100°C</td>
<td>$T=100^\circ \text{C}, I_M < 1 \text{mA}$</td>
<td>-</td>
<td>1618</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td>Tolerance class B(d)</td>
<td>-55 to 0°C</td>
<td>-</td>
<td>±(0.4+0.028 x</td>
<td>T)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tolerance class B(d)</td>
<td>0 to 150°C</td>
<td>-</td>
<td>±(0.4+0.007 x</td>
<td>T)</td>
<td>-</td>
</tr>
<tr>
<td>ΔR</td>
<td>Long Term stability:</td>
<td>1000h at 150°C</td>
<td>0.1</td>
<td></td>
<td></td>
<td>%</td>
</tr>
</tbody>
</table>

NOTES:
(c) Measured under pulse conditions.
(d) See ZNi1000 Tolerance class figure.
Characteristics according to DIN43760

Resistance at a given temperature

R(T) = R0 x (1 + A x T + B x T² + C x T⁴+ D x T⁶)

coefficients:
A = -412.6
B = 140.41
C = 0.00764
D = -6.25 x 10⁻¹⁷
E = -1.25 x 10⁻²⁴

Self heating

For accurate temperature measurement it’s recommended to choose a small current in order to avoid self heating of the resistor. The temperature failure caused by the measurement current can be calculated with:

\[\Delta T = \frac{P}{E_K} \]

where \(P = I^2 \times R \) is the heat power caused by the measurement current and \(E_K \) is the self heating coefficient.

The self heating coefficient for the Ni1000-SOT is:

\(E_K = (1.7 \pm 0.3) \text{ mW/K} \) (Air: 23°C; no air flow).
Application of the nickel sensor ZNI 1000
Package outline - SOT23

<table>
<thead>
<tr>
<th>Dim.</th>
<th>Millimeters</th>
<th>Inches</th>
<th>Dim.</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>1.12</td>
<td>-</td>
<td>0.044</td>
<td>e1</td>
</tr>
<tr>
<td>A1</td>
<td>0.01</td>
<td>0.10</td>
<td>0.0004</td>
<td>0.004</td>
<td>E</td>
</tr>
<tr>
<td>b</td>
<td>0.30</td>
<td>0.50</td>
<td>0.012</td>
<td>0.020</td>
<td>E1</td>
</tr>
<tr>
<td>c</td>
<td>0.085</td>
<td>0.20</td>
<td>0.003</td>
<td>0.008</td>
<td>L</td>
</tr>
<tr>
<td>D</td>
<td>2.80</td>
<td>3.04</td>
<td>0.110</td>
<td>0.120</td>
<td>L1</td>
</tr>
<tr>
<td>e</td>
<td>0.95 NOM</td>
<td>0.037 NOM</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches.
Definitions

Product change
Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer
The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support
Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:
A. Life support devices or systems are devices or systems which:
 1. are intended to implant into the body
 or
 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction
The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions
All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

Quality of product
Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.
To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork
Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)
Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices.

Green compliance
Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:
- "Preview" Future device intended for production at some point. Samples may be available
- "Active" Product status recommended for new designs
- "Last time buy (LTB)" Device will be discontinued and last time buy period and delivery is in effect
- "Not recommended for new designs" Device is still in production to support existing designs and production
- "Obsolete" Production has been discontinued

Datasheet status key:
- "Draft version" This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice.
- "Provisional version" This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.
- "Issue" This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.

Zetex sales offices

Europe
Zetex GmbH
Kustermann-park
Balanstraße 59
D-81541 München
Germany
Telephone: (49) 89 45 49 49 0
Fax: (49) 89 45 49 49 49

Americas
Zetex Inc
700 Veterans Memorial Highway
Hauppauge, NY 11788
USA
Telephone: (1) 631 360 2222
Fax: (1) 631 360 8222

Asia Pacific
Zetex (Asia Ltd)
3791-04 Metroplaza Tower 1
Hing Fong Road, Kwai Fong
Hong Kong
Telephone: (852) 26100 611
Fax: (852) 24250 494

Corporate Headquarters
Zetex Semiconductors plc
Zetex Technology Park, Chadderton
Oldham, OL9 9LL
United Kingdom
Telephone: (44) 161 622 4444
Fax: (44) 161 622 4446
hq@zetex.com

© 2007 Published by Zetex Semiconductors plc

Issue 5 - June 2007 6 www.zetex.com

© Zetex Semiconductors plc 2007