DESCRIPTION
The ZMY20 is an extremely sensitive magnetic sensor employing the magneto-resistive effect of thin film permalloy. It allows the measurement of magnetic fields or the detection of magnetic parts. The highly sensitive and small size magnetoresistive sensors consist of a chip covered with thin film permalloy stripes. These stripes form a Wheatstone bridge, whose output voltage is proportional to the magnetic field component \(H_y \). A perpendicular field \(H_x \) is necessary to stabilize sensor operation. This can be done by using a small permanent magnet.

FEATURES
- Output voltage proportional to magnetic field \(H_y \)
- Adjustment of sensitivity and suppression of hysteresis by the auxiliary magnetic field \(H_x \)
- Magnetic fields vertical to the chip level are not effective

APPLICATIONS
- Linear position sensors for process control, door interlocks, proximity detectors, machine tool sensing
- Scalar measurement for compassing
- Automotive - door switches, engine position & speed sensing
- Metering of fluids by sensing rotation of impeller
- Traffic counting & vehicle-type sensing
- Measurement of current in a conductor without connection

DEVICE MARKING
- ZMY20

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>REEL SIZE</th>
<th>TAPE WIDTH</th>
<th>QUANTITY PER REEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZMY20TA</td>
<td>7”</td>
<td>12mm</td>
<td>1000 units</td>
</tr>
<tr>
<td>ZMY20TC</td>
<td>13”</td>
<td>12mm</td>
<td>4000 units</td>
</tr>
</tbody>
</table>

\(V_B \) = SUPPLY VOLTAGE
\(V_O \) = OUTPUT VOLTAGE

Top View

SOT223S

V = SUPPLY VOLTAGE
V = OUTPUT VOLTAGE

SOT223S
ABSOLUTE MAXIMUM RATINGS.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>LIMIT</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_B</td>
<td>12</td>
<td>V</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>P_{TOT}</td>
<td>120</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_{amb}</td>
<td>-40 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{stg}</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

ELECTRICAL CHARACTERISTICS (at $T_{amb}=25^\circ C$ and $H_X=3 \text{ kA/m}$ unless otherwise stated)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
<th>TEST CONDITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge resistance</td>
<td>R_{br}</td>
<td>1.2</td>
<td>1.7</td>
<td>2.2</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Output voltage range</td>
<td>V_O/V_B</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>mV/V</td>
<td></td>
</tr>
<tr>
<td>Open circuit sensitivity</td>
<td>S</td>
<td>3.7</td>
<td>4.7</td>
<td>5.7</td>
<td>(mV/V)/(kA/m)</td>
<td>No disturbing field H_d allowed</td>
</tr>
<tr>
<td>Hysteresis of output voltage</td>
<td>V_{OIH}/V_B</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>µV/V</td>
<td>$H_y \leq 2\text{kA/m}$</td>
</tr>
<tr>
<td>Offset Voltage</td>
<td>V_{off}/V_B</td>
<td>-1.0</td>
<td>-</td>
<td>+1.0</td>
<td>mV/V</td>
<td></td>
</tr>
<tr>
<td>Operating Frequency</td>
<td>f_{max}</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Temp. Coeff. of offset voltage</td>
<td>$TC_{V_{off}}$</td>
<td>-3</td>
<td>-</td>
<td>+3</td>
<td>(µV/V)/K</td>
<td>$T_{amb} = -25$ to +125°C</td>
</tr>
<tr>
<td>Temp. Coeff. of bridge resistance</td>
<td>TCR_{br}</td>
<td>0.25</td>
<td>0.3</td>
<td>0.35</td>
<td>%/K</td>
<td>$T_{amb} = -25$ to +125°C</td>
</tr>
<tr>
<td>Temp. Coeff. of open circuit sensitivity $V_B=5V$</td>
<td>TCS_{V}</td>
<td>-0.25</td>
<td>-0.3</td>
<td>-0.35</td>
<td>%/K</td>
<td>$T_{amb} = -25$ to +125°C</td>
</tr>
<tr>
<td>Temp. Coeff. of open circuit sensitivity $I_B=3\text{mA}$</td>
<td>TCS_{I}</td>
<td>-</td>
<td>-0.1</td>
<td>-</td>
<td>%/K</td>
<td>$T_{amb} = -25$ to +125°C</td>
</tr>
</tbody>
</table>
Application 1 (digital output)

Application 2 (analog output)
Sensor output characteristic
\[V_O = f(H_y); \ H_x \text{-parameter} \]
\[V_b = \text{const}; \ T_{amb} = 25^\circ C \]

Safe operating area
\[H_{xtot} = H_x + H_d; \ T_{amb} = 25^\circ C; \ (H_d = \text{disturbing field}) \]

The sensor has to be reset after leaving the safe operating area by an auxiliary field of \(H_x = 3kA/m \)
Sensor sensitivity characteristic
$S=f(H_x)$
$V_b=\text{const}; \ T_{\text{amb}}=25^\circ\text{C}$

Supply voltage (maximum) derating curve
$V_{B\text{max}}=f(T_{\text{amb}})$

Device mounted on 40 x 40 mm2 board (copper area 600 mm2)
ZMY20

PACKAGE OUTLINE

CONTROLLING DIMENSIONS IN MILLIMETRES
APPROX CONVERSIONS INCHES.
Definitions

Product change
Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer
The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user’s application and meets with the user’s requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support
Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:

A. Life support devices or systems are devices or systems which:
1. are intended to implant into the body
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction
The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions
All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.

For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office.

Quality of product
Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.

To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork

Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)
Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

Green compliance
Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:
Preview Future device intended for production at some point. Samples may be available
Active Product status recommended for new designs
Last time buy (LTB) Device will be discontinued and last time buy period and delivery is in effect
Not recommended for new designs Device is still in production to support existing designs and production
Obsolete Production has been discontinued

Datasheet status key:
Draft version This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice.
Provisional version This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.
Issue This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.