Lead-free Green

PI6CG334Q

4-Output PCle Gen 6 Clock Generator For Automotive Applications

Description

The DIODES PI6CG334Q is a 4 -output very-low-power PCIe ${ }^{*}$ Gen 1/Gen 2/Gen 3/Gen 4/Gen 5/Gen 6 clock generator. It uses 25 MHz crystal or CMOS reference as an input to generate the 100 MHz low-power differential HCSL outputs with on-chip terminations. The on-chip termination can save 16 external resistors and make layout easier. An additional buffered reference output is provided to serve as a low-noise reference for other circuitry. It uses Diodes' proprietary PLL design to achieve very-low jitter that meets PCIe Gen 1/Gen 2/Gen 3/Gen 4/Gen 5/Gen 6 requirements. It also provides various options such as different slew rate and amplitude through SMBUS, so users can configure the device easily to get the optimized performance for their individual boards. The device also supports selectable spread-spectrum options to reduce EMI for various applications.

Block Diagram

Features

- 3.3V Supply Voltage
- Crystal/CMOS Input: 25 MHz
- Four Differential Low Power HCSL Outputs with On-Chip Termination
- Individual Output Enable
- Reference CMOS Output
- Programmable Slew Rate and Output Amplitude for Each Output
- Differential Outputs Blocked until PLL is Locked
- Selectable $0 \%,-0.25 \%$, or -0.5% Spread on Differential Outputs
- Strapping Pins or SMBus for Configuration
- Differential Output-To-Output Skew <50 ps
- Very-Low Jitter Outputs
- PCIe 6.0 Common Clock (RMS) Jitter <0.04ps
- Differential Cycle-To-Cycle Jitter <50ps
- PCIe Gen 1/Gen 2/Gen 3/Gen 4/Gen 5/Gen 6 Compliant
- Support Automotive Grade 2
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- The PI6CG334Q is suitable for automotive applications requiring specific change control; this part is AEC-Q100 qualified, PPAP capable, and manufactured in IATF 16949 certified facilities.
https://www.diodes.com/quality/product-definitions/
- Packaging (Pb-free \& Green):
- 32 -Contact, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ WQFN (ZHW)

[^0]A Product Line of Diodes Incorporated
(4) PERICOM

PI6CG334Q

Pin Configuration

Pin Description

Pin \#	Pin Name	Type		Description
1, 15, 26, 30	GND	Power		Ground pin
2	XTAL_IN/CLK	Input		Crystal input or CMOS reference input
3	XTAL_OUT	Output		Crystal output
4	V DD_OSC	Power		Power supply for oscillator circuitry, nominal 3.3V
5	VDD_REFOUT	Power		Power supply for buffered CMOS output
6	SADR/REFOUT	Input/ Output	CMOS	Latch to select SMBus Address or LVCMOS REFOUT. This pin has an internal pulldown.
7	SCLK	Input	CMOS	SMBUS clock input, 3.3V tolerant
8	SDATA	Input/ Output	CMOS	SMBUS Data line, 3.3V tolerant
9	V DD_DIG	Power		Power supply for digital circuitry, nominal 3.3V
10	GND_REF	Power		Ground for REFOUT
11	GND_DIG	Power		Ground for digital circuitry
12	OE0\#	Input	CMOS	Active low input for enabling Q0 pair. This pin has an internal pull-down. $1=$ disable outputs, $0=$ enable outputs
13	Q0+	Output	HCSL	Differential true clock output
14	Q0-	Output	HCSL	Differential complementary clock output
16,25	$\mathrm{V}_{\text {DDO }}$	Power		Power supply for differential outputs

A Product Line of Diodes Incorporated
(1) PERICOM

PI6CG334Q

Pin \#	Pin Name	Type		Description
17	Q1+	Output	HCSL	Differential true clock output
18	Q1-	Output	HCSL	Differential complementary clock output
19	OE1\#	Input	CMOS	Active low input for enabling Q1 pair. This pin has an internal pull-down. $1=$ disable outputs, $0=$ enable outputs
20	GNDA	Power		Ground for analog circuitry
21	$\mathrm{V}_{\text {DDA }}$	Power		Power supply for analog circuitry
22	Q2+	Output	HCSL	Differential true clock output
23	Q2-	Output	HCSL	Differential complementary clock output
24	OE2\#	Input	CMOS	Active low input for enabling Q2 pair. This pin has an internal pull-down. $1=$ disable outputs, $0=$ enable outputs
27	Q3+	Output	HCSL	Differential true clock output
28	Q3-	Output	HCSL	Differential complementary clock output
29	OE3\#	Input	CMOS	Active low input for enabling Q3 pair. This pin has an internal pull-down. $1=$ disable outputs, $0=$ enable outputs
31	PD\#	Input	CMOS	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pullup resistor.
32	SS_SEL_TRI	Input	Tri-level	Latched select input to select spread-spectrum amount at initial power up. $1=0.5 \%$ spread, $M=$ Spread off, $0=$ Spread off. This pin has both internal pull-up and pull-down. Refer to SMBUS byte_1 bit 4, $3=$ ' 01 ' to get -0.25% spread.
Epad	GND	Power		Connect to ground

PI6CG334Q

SMBus Address Selection Table

	SADR	Address	+Read/Write Bit
State of SADR on First Application of PD\#	0	1101000	X
	1	1101010	X

Power Management Table ${ }^{(3)}$

PD\#	SMBus OE bit	OEn\#	Qn+	Qn-	REFOUT
0	X	X	Low $^{(1)}$	Low $^{(1)}$	HiZ $^{(2)}$
1	1	0	Running	Running	Running
1	1	1	Disabled $^{(1)}$	Disabled $^{(1)}$	Running
1	0	X	Disabled $^{(1)}$	Disabled $^{(1)}$	Disabled $^{(4)}$

1. The output state is set by $B 11[1: 0]$ (Low/Low default).
2. REF is Hi-Z until the 1st assertion of PD\# high. After this, when PD\# is low, REF is disabled. If Byte 3 , bit $5=1$, then REF is running
3. Input High/ Low defined at default values for device.
4. See SMBUs Byte 3, bit 4 .

PI6CG334Q

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential, $\mathrm{V}_{\mathrm{DDxx}}$ \qquad -0.5 V to +4.6 V
Input Voltage \qquad -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$, not exceed 4.6 V
SMBus, Input High Voltage 3.6 V
\qquad
Max Junction Temperature \qquad

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Conditions

Temperature $=\mathrm{T}_{\mathrm{A}}$; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {DDO, }}$ $\mathrm{V}_{\mathrm{DDA}}$, VDD_OSC, VDD_DIG, VDD_RE- FOUT	Power Supply Voltage		3.135	3.3	3.465	V
$\mathrm{I}_{\text {DDA }}$	Analog Power Supply Current	All outputs active @ 100MHz		22	25	mA
IDD	Power Supply Current	All $V_{D D}$, except $V_{\text {DDA }}$ and $V_{\text {DDO }}$, All outputs active @ 100 MHz		17	20	mA
$\mathrm{I}_{\mathrm{DDO}}$	IO Power Supply Current ${ }^{(3)}$	VDDO, All outputs active @ 100 MHz		27	31	mA
IDDA_WL	Analog Power Supply Wake-onLAN ${ }^{(1)}$ Current	Q outputs off, REF output running		0.5	1	mA
IDD_WL	Power Supply Wake-on-LAN ${ }^{(1)}$ Current	All $V_{\text {DD }}$, except $V_{\text {DDA }}$ and $V_{\text {DDO }}$, Q outputs off, REF output running		3	6	mA
IDDO_WL	Power Supply Wake-on-LAN ${ }^{(1)}$ Current for Outputs	Q outputs off, REF output running		1	2	mA
IDDA_PD	Analog Power Supply Power Down ${ }^{(2)}$ Current	All outputs off		0.5	1	mA
IDDO_PD	IO Power Down ${ }^{(2)}$ Current	All outputs off		1	2	mA
IDD_PD	Power Supply Power Down ${ }^{(2)}$ Current	All outputs off		1	2	mA
$\mathrm{T}_{\text {A }}$	Ambient Temperature	Automotive grade	-40		105	${ }^{\circ} \mathrm{C}$

Note:

1. Wake-on-LAN mode: PD\# = '0' Byte 3 , bit $5=$ ' 1 '.
2. Power down mode: PD\# = '0' Byte 3, bit $5=$ ' 0 '.
3. Outputs drive 5 inch trace.
antanam TY PERICOM
PI6CG334Q

Input Electrical Characteristics

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
R_{pu}	Internal Pullup Resistance			120		$\mathrm{~K} \Omega$
R_{dn}	Internal Pulldown Resistance			120		$\mathrm{~K} \Omega$
C $_{\text {XTAL }}$	Internal Capacitance on X_IN and X_OUT pins			8		pF
LPIN	Pin Inductance				7	nH

Crystal Characteristic

Parameters	Description	Min.	Typ	Max.	Units
OSCmode	Mode of Oscillation	Fundamental			
FREQ	Frequency		25		MHz
ESR $^{(1)}$	Equivalent Series Resistance			50	Ω
Cload	Load Capacitance		8		pF
Cshunt	Shunt Capacitance			7	pF
-	Drive Level		200	$\mu \mathrm{~W}$	

Note:

1. ESR value is dependent upon frequency of oscillation.

SMBus Electrical Characteristics

Temperature $=T_{A}$; Supply voltages per normal operation conditions; See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
V ${ }_{\text {DDSMB }}$	Nominal Bus Voltage		2.7		3.6	V
$\mathrm{V}_{\text {IHSMB }}$	SMBus Input High Voltage	SMBus, $\mathrm{V}_{\text {DDSMB }}=3.3 \mathrm{~V}$	2.1		3.6	V
		SMBus, $\mathrm{V}_{\text {DDSMB }}<3.3 \mathrm{~V}$	$\begin{gathered} 0.65 \\ \text { V DDSMB }^{2} \end{gathered}$			
$\mathrm{V}_{\text {ILSMB }}$	SMBus Input Low Voltage	SMBus, $\mathrm{V}_{\text {DDSMB }}=3.3 \mathrm{~V}$			0.8	V
		SMBus, $\mathrm{V}_{\text {DDSMB }}<3.3 \mathrm{~V}$			0.8	
$\mathrm{I}_{\text {SMBSINK }}$	SMBus Sink Current	SMBus, at V ${ }_{\text {OLSMB }}$	4			mA
V	SMBus Output Low Voltage	SMBus, at ISMBSINK			0.4	V
$\mathrm{f}_{\text {MAXSMB }}$	SMBus Operating Frequency	Maximum frequency			500	kHz
$\mathrm{t}_{\text {RMSB }}$	SMBus Rise Time	(Max $\left.\mathrm{V}_{\text {IL }}-0.15\right)$ to ($\mathrm{Min} \mathrm{V}_{\mathrm{IH}}+0.15$)			1000	ns
$\mathrm{t}_{\text {FMSB }}$	SMBus Fall Time	$\left(\mathrm{Min} \mathrm{V}_{\mathrm{IH}}+0.15\right)$ to $\left(\mathrm{Max} \mathrm{V}_{\mathrm{IL}}-0.15\right)$			300	ns

A Product Line of
Diodes Incorporated
(4) PERICOM

PI6CG334Q

Spread Spectrum Characteristic

Temperature $=T_{A}$; Supply voltages per normal operation conditions; See test circuits for the load conditions.

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
$\mathrm{f}_{\text {MOD }}$	SS Modulation Frequency	Triangular modulation	30	31.8	33	kHz

LVCMOS DC Electrical Characteristics

Temperature $=\mathrm{T}_{\mathrm{A}}$; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {IH }}$	Input High Voltage	Single-ended inputs, except SMBus	$\begin{aligned} & 0.75 \\ & V_{\mathrm{DD}} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \\ & +0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IM }}$	Input Mid Voltage	SS_SEL_TRI	$0.4 \mathrm{~V}_{\text {DD }}$	$0.5 \mathrm{~V}_{\mathrm{DD}}$	$0.6 \mathrm{~V}_{\text {DD }}$	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage	Single-ended inputs, except SMBus	-0.3		$\begin{aligned} & 0.25 \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	V
I_{IH}	Input High Current	Single-ended inputs, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input Low Current	Single-ended inputs, $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-5			$\mu \mathrm{A}$
IIH	Input High Current	Single-ended inputs with pullup/pulldown resistor, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			50	$\mu \mathrm{A}$
IIL	Input Low Current	Single-ended inputs with pullup/pulldown resistor, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-50			$\mu \mathrm{A}$
VOH	Output High Voltage	REFOUT, except SMBus; $\mathrm{IOH}=-2 \mathrm{~mA}$	$\begin{gathered} 0.8 \times \\ \mathrm{V}_{\text {DD_ }} \\ \text { REFOUT } \end{gathered}$			V
VOL	Output Low Voltage	REFOUT, except SMBus; $\mathrm{I}_{\text {OL }}=2 \mathrm{~mA}$			$0.2 \times$ V_{DD} Refout	V
Rout	CMOS Output Impedance			20		Ω
$\mathrm{CIIN}^{\text {IN }}$	Input Capacitance		1.5		5	pF

LVCMOS AC Characteristics

Temperature $=\mathrm{T}_{\mathrm{A}}$; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
$\mathrm{f}_{\text {INPUT }}$	Input Frequency	XTAL_IN/CLK		25		MHz
t RIN	Input Rise Time	Single-ended inputs			5	ns
tfin	Input Fall Time	Single-ended inputs			5	ns
tsTAB	Clock Stabilization	From power up and after input clock stabi- lization or deassertion of PD\# to first clock		0.75	1	ms
toeLat	Output Enable Latency	Q start after OE\# assertion Q stop after OE\# deassertion	1		3	clocks

A Product Line of Diodes Incorporated

(4) PERICOM

PI6CG334Q

Symbol	Parameters	Conditions	Min.	Typ.	Max.	Units
$t_{\text {PDLAT }}$	PD\# Deassertion	Differential outputs enable after PD\# deassertion		20	300	$\mu \mathrm{s}$
tPERIOD	REFOUT Clock Period	REFOUT, assume input is at 25 MHz		40		ns
$\mathrm{f}_{\text {ACC }}$	REFOUT Frequency Accuracy ${ }^{(1)}$	REFOUT, long term accuracy to input		0		ppm
tslew	REFOUT Slew Rate ${ }^{(1)}$	Byte $3=1 \mathrm{~F}, 20 \%$ to 80% of $\mathrm{V}_{\text {DDREF }}$	0.8	1.4	2	V/ns
		Byte $3=5 \mathrm{~F}, 20 \%$ to 80% of $\mathrm{V}_{\text {DDREF }}$	1.5	2.4	3.2	V/ns
		Byte $3=9 \mathrm{~F}, 20 \%$ to 80% of $\mathrm{V}_{\text {DDREF }}$	2.0	3.0	3.9	V/ns
		Byte $3=\mathrm{DF}, 20 \%$ to 80% of $\mathrm{V}_{\text {DDREF }}$	2.3	3.2	4.5	V/ns
$t_{\text {DC }}$	REFOUT Duty Cycle ${ }^{(1)}$	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{DD}} / 2 \mathrm{~V}$, driven by a Xtal	45	50	55	\%
$\mathrm{t}_{\text {DCDIS }}$	REFOUT Duty Cycle Distortion	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{DD}} / 2 \mathrm{~V}$, driven by an external source	-2	0	+2	\%
$\mathrm{t}_{\text {IITCC }}$	REFOUT Cycle-Cycle Jitter	$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{DD}} / 2 \mathrm{~V}$, driven by a Xtal		70	150	ps
$\mathrm{t}_{\text {IITPH }}$	REFOUT Phase Jitter, RMS	12 kHz to 5 MHz , SSC off, driven by a Xtal		0.16	0.3	ps
		12 kHz to 5 MHz , SSC on, driven by a Xtal		0.9	1.5	ps
$\mathrm{t}_{\text {JITN }}$	Noise Floor	1 kHz offset, driven by a Xtal		-149	-135	$\mathrm{dBc} / \mathrm{Hz}$
		10 kHz offset to Nyquist, driven by a Xtal		-158	-140	$\mathrm{dBc} / \mathrm{Hz}$

Note:

1. Guaranteed by design and characterization-not 100% tested in production.

HCSL Output Characteristics

Temperature $=T_{A}$; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Condition	Min.	Typ.	Max.	Units
V_{OH}	Output Voltage High ${ }^{(1)}$	Statistical measurement on single-ended signal using oscilloscope math function	660	784	850	mV
V_{OL}	Output Voltage Low ${ }^{(1)}$		-150		150	mV
V OMAX	Output Voltage Maximum ${ }^{(1)}$	Measurement on single ended signal using absolute value		816	1150	mV
Vomin	Output Voltage Minimum ${ }^{(1)}$		-300	-42		mV
VOC	Output Cross Voltage ${ }^{(1,2,4)}$		250	430	550	mV
DVOC	VOC Magnitude Change ${ }^{(1,2,5)}$			12	140	mV

Note:

1. At default SMBUS amplitude settings.
2. Guaranteed by design and characterization-not 100% tested in production.
3. Measured from differential waveform.
4. This one is defined as voltage where $\mathrm{Q}+=\mathrm{Q}$ - measured on a component test board and only applied to the differential rising edge.
5. The total variation of all Vcross measurements in any particular system. This is a subset of Vcross_min/max allowed.

A Product Line of
Diodes Incorporated
(4) PERICOM

PI6CG334Q

HCSL Output AC Characteristics

Temperature $=\mathrm{T}_{\mathrm{A}}$; Supply voltages per normal operation conditions; See test circuits for the load conditions.

Symbol	Parameters	Condition	Min.	Typ.	Max.	Spec Limit	Units
fout	Output Frequency			100			MHz
t_{RF}	Slew Rate ${ }^{(1,2,3)}$	Scope averaging on fast setting	2.5	3.2	4		V/ns
		Scope averaging on slow setting	2.2	3	3.7		V/ns
$\mathrm{Dt}_{\mathrm{RF}}$	Slew Rate Matching ${ }^{(1,2,4)}$	Scope averaging on		7	15		\%
$t_{\text {DC }}$	Duty Cycle ${ }^{(1,2)}$	Measured differentially, PLL Mode	45	50	55		\%
$\mathrm{t}_{\text {SKEW }}$	Output Skew ${ }^{(1,2)}$	Averaging on, $\mathrm{V}_{\mathrm{T}}=50 \%$		20	50		ps
$\mathrm{tj}_{\mathrm{c}-\mathrm{c}}$	Cycle-to-Cycle Jitter ${ }^{(1,2)}$			20	50		ps
tjphase	Integrated Phase Jitter (RMS) $(1,5)$	PCIe $1.0^{(6)}(2.5 \mathrm{~Gb} / \mathrm{s})$		20	30	86	$\mathrm{ps}(\mathrm{p}-\mathrm{p})$
		PCIe 2.0 ($5 \mathrm{~Gb} / \mathrm{s}$)		0.5	0.6	3.1	ps
		PCIe 3.0 ($8 \mathrm{~Gb} / \mathrm{s}$)		0.32	0.42	1.0	ps
		PCIe 4.0 ($16 \mathrm{~Gb} / \mathrm{s}$)		0.32	0.4	0.5	ps
		PCIe 5.0 ($32 \mathrm{~Gb} / \mathrm{s}$)		0.05	0.06	0.15	ps
		PCIe 6.0 ($64 \mathrm{~Gb} / \mathrm{s}$)		0.03	0.04	0.1	ps
tjph-SRISG2	Integrated Phase Jitter (RMS)	PCIe 2.0 ($5 \mathrm{~Gb} / \mathrm{s}$)		0.6	0.92	N/A	ps
tjph-SRISG3	Integrated Phase Jitter (RMS)	PCIe 3.0 ($8 \mathrm{~Gb} / \mathrm{s}$)		0.5	0.6	N/A	ps
tjph-SRISG4	Integrated Phase Jitter (RMS)	PCIe 4.0 ($16 \mathrm{~Gb} / \mathrm{s}$)		0.4	0.5	N/A	ps
tjph-SRISG5	Integrated Phase Jitter (RMS)	PCIe 5.0 ($32 \mathrm{~Gb} / \mathrm{s}$)		0.06	0.07	N/A	ps
tjph-SRISG6	Integrated Phase Jitter (RMS)	PCIe 6.0 ($64 \mathrm{~Gb} / \mathrm{s}$)		0.04	0.05	N/A	ps

Note:

1. Guaranteed by design and characterization-not 100% tested in production.
2. Measured from differential waveform.
3. Slew rate is measured through the Vswing voltage range centered around differential 0 V , within $\pm 150 \mathrm{mV}$ window.
4. It is measured using a $\pm 75 \mathrm{mV}$ window centered on the average cross point.
5. See http://www.pcisig.com for complete specs.
6. Sample size of at least 100 k cycles. This can be extrapolated to $108 \mathrm{ps} \mathrm{pk}-\mathrm{pk} @ 1 \mathrm{M}$ cycles for a BER of 10^{-12}.

A Product Line of Diodes Incorporated

PI6CG334Q

SMBus Serial Data Interface

The PI6CG334Q is a slave-only device that supports block read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	SADR	0	$1 / 0$

Note:

1. SMBus address is latched on SADR pin.

How to Write

$\mathbf{1}$ bit	$\mathbf{7}$ bits	$\mathbf{1}$ bit	$\mathbf{1}$ bit	$\mathbf{8}$ bits	$\mathbf{1}$ bit	$\mathbf{8}$ bits	$\mathbf{1}$ bit	$\mathbf{8}$ bits	$\mathbf{1}$ bit		$\mathbf{8}$ bits	$\mathbf{1}$ bit	$\mathbf{1}$ bit
Start bit	Add.	W(0)	Ack	Beginning Byte loca- tion = N	Ack	Data Byte count $=X$	Ack	Beginning Data Byte (N)	Ack	$\ldots \ldots .$.	Data Byte $(N+X-1)$	Ack	Stop bit

How to Read

$\mathbf{1}$ bit	$\mathbf{7}$ bits	$\mathbf{1}$ bit	$\mathbf{1}$ bit	$\mathbf{8}$ bits	$\mathbf{1}$ bit	$\mathbf{1}$ bit	$\mathbf{7}$ bits	$\mathbf{1}$ bit	$\mathbf{1}$ bit	$\mathbf{8}$ bits	$\mathbf{1}$ bit	$\mathbf{8}$ bits	$\mathbf{1}$ bit
Start bit	Address	W(0)	Ack	Beginning Byte loca- tion $=N$	Ack	Repeat Start bit	Address	R(1)	Ack	Data Byte count $=X$	Ack	Beginning Data Byte (N)	Ack

	$\mathbf{8}$ bits	$\mathbf{1}$ bit	$\mathbf{1}$ bit
$\ldots \ldots$.	Data Byte $(N+X-1)$	NAck	Stop bit

Byte 0: Output Enable Register

Bit	Control Function	Description	Type	Power-up Condition	0	1
7	Reserved	-	-	1	See B11[1:0]	-
6	Q3_OE	Q3 output enable	RW	1		Pin Control
5	Q2_OE	Q2 output enable	RW	1		Pin Control
4	Reserved	-	-	1		-
3	Q1_OE	Q1 output enable	RW	1		Pin Control
2	Reserved	-	-	1		-
1	Q0_OE	Q0 output enable	RW	1		Pin Control
0	Reserved	-	-	1		-

Note:

1. A low on these bits will override the OE\# pins and force the differential outputs to the state indicated by B11[1:0] (Low/ Low default).

A Product Line of Diodes Incorporated
(1) PERICOM

PI6CG334Q

Byte 1: SS Spread Spectrum and Control Register

Bit	Control Function	Description	Type	Power-up Condition	0	1
7	SSENRB1	SS Enable Readback Bit1	R	Latch	$\begin{aligned} & \text { '00' for SS_SEL_TRI = '0', } \\ & \text { '10' for SS_SEL_TRI = 'M', '11' } \\ & \text { for SS_SEL_TRI ='1' } \end{aligned}$	
6	SSENRB0	SS Enable Readback Bit0	R	Latch		
5	SSEN_SWCTR	Enable SW control of SS	RW	0	Values in B1[7:6] control SS amount	Values in B1[4:3] control SS amount
4	SSENSW1	SS enable SW control Bit1	RW ${ }^{(1)}$	0	$\begin{aligned} & \text { '00' = SS off, '01' = }-0.25 \% \text { SS, } \\ & ' 10 '=\text { SS off, '11' }=-0.5 \% \text { SS } \end{aligned}$	
3	SSENSW0	SS enable SW control Bit0	RW ${ }^{(1)}$	0		
2	Reserved	-	-	1	-	-
1	Amplitudel	Control output amplitude	RW	1	$\begin{aligned} & ' 00 '=0.6 \mathrm{~V}, ' 01 '=0.68 \mathrm{~V}, ' 10 '= \\ & 0.75 \mathrm{~V}, ' 11 '=0.85 \mathrm{~V} \end{aligned}$	
0	Amplitude0		RW	0		

Note:

1. Spread must be selected OFF or ON with the hardware latch pin. These bits must not be used to turn spread ON or OFF after power up. These bits can be used to change the spread amount, and B1[5] must be set to a 1 for these bits to have any effect on the part. If these bits are used to turn spread OFF or ON, the system must be reset.

Byte 2: Differential Output Slew Rate Control Register

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
7	Reserved	-	-	1	-	
6	SLEWRATECTR_Q3	Control slew rate of Q3	RW	1	Slow setting	Fast setting
5	SLEWRATECTR_Q2	Control slew rate of Q2	RW	1	Slow setting	Fast setting
4	Reserved	-	-	1	-	-
3	SLEWRATECTR_Q1	Control slew rate of Q1	RW	1	Slow setting	Fast setting
2	Reserved	-	-	1	-	-
1	SLEWRATECTR_Q0	Control slew rate of Q0	RW	1	Slow setting	Fast setting
0	Reserved	-	-	1	-	

antanam TY PERICOM
PI6CG334Q

Byte 3: REF Control Register

Bit	Control Function	Description	Type	Power-up Condition	0	1
7	REFSLEWRATE	Slew rate control for REF	RW	0	$\begin{aligned} & \prime 00^{\prime}=1.4 \mathrm{~V} / \mathrm{ns} \text { ' } 01^{\prime}=2.4 \mathrm{~V} / \mathrm{ns}, \\ & ' 10^{\prime}=3 \mathrm{~V} / \mathrm{ns}, ~ \\ & \hline 11^{\prime}=3.2 \mathrm{~V} / \mathrm{ns} \end{aligned}$	
6			RW	1		
5	REF_PDSTATE	Wake-on-Lan enable for REF	RW	0	$\begin{aligned} & \text { REF = Dis- } \\ & \text { abled in PD } \\ & \text { state }^{(1)} \end{aligned}$	$\begin{aligned} & \text { REF = run- } \\ & \text { ning in PD } \\ & \text { state } \end{aligned}$
4	REF_OE	Output enable for REF	RW	1	$\begin{aligned} & \text { REF = Dis- } \\ & \text { abled }^{(1)} \end{aligned}$	$\begin{aligned} & \text { REF = run- } \\ & \text { ning } \end{aligned}$
3	Reserved	-	-	1	-	-
2	Reserved	-	-	1	-	-
1	Reserved	-	-	1	-	-
0	Reserved	-	-	1	-	-

Note:

1. The disabled state depends on Byte11[1:0]. '00' = Low, '01'=HiZ, '10'=Low, '11'=High.

Byte 4: Reserved

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
$7: 0$	Reserved	-	-	0×40	-	-

Byte 5: Revision and Vendor ID Register

Bit	Control Function	Description	Type	Power-up Condition	0	1
7	RID3	Revision ID	R	0	$\mathrm{rev}=0000$	
6	RID2		R	0		
5	RID1		R	0		
4	RID0		R	0		
3	PVID3	Vendor ID	R	0	Diodes $=0011$	
2	PVID2		R	0		
1	PVID1		R	1		
0	PVID0		R	1		

PI6CG334Q

Byte 6: Device Type/Device ID Register

Bit	Control Function	Description	Type	Power-up Condition	0 1
7	DTYPE1	Device type	R	0	$\begin{aligned} & \text { '00' = CG, '01' = ZDB, } \\ & \text { '10' = Reserve, '11' = NZDB } \end{aligned}$
6	DTYPE0		R	0	
5	DID5	Device ID	R	0	001000 binary, 08Hex
4	DID4		R	0	
3	DID3		R	1	
2	DID2		R	0	
1	DID1		R	0	
0	DID0		R	0	

Byte 7: Byte Count Register

Bit	Control Function	Description	Type	Power-up Condition	0	1
7	Reserved	-	-	0	-	-
6	Reserved	-	-	0	-	-
5	Reserved	-	-	0	-	-
4	BC4	Byte count programming	RW	0	Writing to this register will configure how many bytes will be read back, default is 8 bytes	
3	BC3		RW	1		
2	BC2		RW	0		
1	BC1		RW	0		
0	BC0		RW	0		

Byte 8 and 9: Reserved

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
$7: 0$	Reserved	-	-	B8:0x36 $B 9: 0 x 00$	-	-

A Product Line of Diodes Incorporated
(1) PERICOM

PI6CG334Q

Byte 10: PD Restore

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
7	Reserved	-	-	0	-	-
6	PD Restore	PD Restore to default configuration	RW	1	Clear PD Config	Keep PD Config
$5: 0$	Reserved	-	-	0	-	-

Byte 11: Stop Control

Bit	Control Function	Description	Type	Power-up Condition	0	1
7:2	Reserved	-	-	0	-	-
1	STP1	True/ Compliment DIF Output Disable Sate	RW	0	00= Low/Low	$10=\mathrm{High} /$ Low
0	STP0		RW	0	01 $=\mathrm{HiZ} / \mathrm{HiZ}$	11= Low/High

Byte 12: Impedance Control

Bit	Control Function	Description	Type	Power-up Condition	0	1
7	Q1_Zout1	Q1 Zout	RW	10	$\begin{aligned} 00 & =\text { Reserved } \\ 01 & =85 \Omega \\ 10 & =100 \Omega \\ 11 & =\text { Reserved } \end{aligned}$	
6	Q1_Zout0	Q1 Zout	RW			
5	Reserved					
4	Reserved					
3	Q0_Zout1	Q0 Zout	RW			
2	Q0_Zout0	Q0 Zout	RW			
1	Reserved					
0	Reserved					

Byte 13: Impedance Control

A Product Line of Diodes Incorporated
(4) PERICOM

PI6CG334Q

Byte 14: OE Termination Control

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
7	OE1_term1	OE1 pullup or down	RW	0	$00=$ None	$10=$ Pullup
6	OE1_term0	OE1 pullup or down	RW	1	$01=$ Pulldown	$11=$ Pullup and Down
5	Reserved	-	-	0	-	-
4	Reserved	-	-	1	-	-
3	OE0_term1	OE0 pullup or down	RW	0	$00=$ None	$10=$ Pullup
2	OE0_term0	OE0 pullup or down	-	1	$01=$ Pulldown	$11=$ Pullup and Down
1	Reserved	-	-	1	-	-
0	Reserved	-	0	-		

Byte 15: OE Termination Control

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
7	Reserved	-	-	0	-	-
6	Reserved	-	-	1	-	-
5	OE3_term1	OE3 pullup or down	RW	0	$00=$ None	$10=$ Pullup
4	OE3_term0	OE3 pullup or down	RW	1	$01=$ Pulldown	$11=$ Pullup and Down
3	OE2_term1	OE2 pullup or down	RW	0	$00=$ None	$10=$ Pullup
2	OE2_term0	OE2 pullup or down	RW	1	$01=$ Pulldown	$11=$ Pullup and Down
1	Reserved	-	-	0	-	-
0	Reserved	-	-	1	-	-

Byte 16: Power Good Termination Control

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
$7: 2$	Reserved	-	-	0×09	-	-
1	PWRGD_PD1	Clock power good and power-down pullup or				
	pulldown	RW	1	$00=$ None	$10=$ Pullup	
0	PWRGD_PD0	RW	0	$00=$ Pulldown	$11=$ Pullup and Down	

Byte 17: Reserved

PI6CG334Q

Byte 18: Enable Pin Control

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
7	Reserved	-	-	0	-	-
6	OE3_Enable	Sets Enable High or Low	RW	0	Enable $=$ Low	Enable $=$ High
5	OE2_Enable	Sets Enable High or Low	RW	0	Enable $=$ Low	Enable $=$ High
4	Reserved	-	-	0	-	-
3	OE1_Enable	Sets Enable High or Low	RW	0	Enable $=$ Low	Enable $=$ High
2	Reserved	-	-	0	-	-
1	OE0_Enable	Sets Enable High or Low	RW	0	Enable $=$ Low	Enable $=$ High
0	Reserved	-	-	0	-	

Byte 19: Power Down Pin Control

Bit	Control Function	Description	Type	Power-up Condition	$\mathbf{0}$	$\mathbf{1}$
$7: 1$	Reserved	-	-	0	-	-
0	PWRGD_PD	PWRGD_PD Active via Pullup or Pulldown	RW	0	Power Down $=$ Low	Power Down $=$ High

A Product Line of Diodes Incorporated

PI6CG334Q

Phase Noise Plots

100 MHz HCSL Clock (12 k to 20 MHz)

25MHz CMOS Clock

PI6CG334Q

Low-Power HCSL Differential Output Test Load

Figure 1. Low Power HCSL Test Circuit

Figure 2. CMOS REF Test Circuit

Figure 3. Differential Output Driving LVDS
Alternate Differential Output Terminations

Component	Receiver with Termination	Receiver without Termination	Unit
$\mathrm{R}_{1 \mathrm{a},} \mathrm{R}_{1 \mathrm{~b}}$	10,000	140	Ω
$\mathrm{R}_{2 \mathrm{a},} \mathrm{R}_{2 \mathrm{~b}}$	5600	75	Ω
C_{C}	0.1	0.1	$\mu \mathrm{~F}$
$\mathrm{~V}_{\mathrm{CM}}$	1.2	1.2	V

Figure 4. Power Supply Filter

PI6CG334Q

Crystal Circuit Connection

The following diagram shows PI6CG334Q crystal circuit connection with a parallel crystal. For the CL $=8 \mathrm{pF}$ crystal, it is suggested to use $\mathrm{C} 1=8 \mathrm{pF}$ and $\mathrm{C} 2=8 \mathrm{pF}$. C 1 and C 2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts based on the following formula in the Crystal Capacitor Calculation diagram.

Crystal Oscillator Circuit

Crystal Capacitor Calculation

Final chooseltrim C1=C2=2 *CL - (Cb +Cj$)$ for the target $+/$-ppm
Example: $\mathrm{C} 1=\mathrm{C} 2=2^{*}(18 \mathrm{pF})-(4 \mathrm{pF}+5 \mathrm{pF})=27 \mathrm{pF}$

Recommended Crystal Specification

Diodes Recommends:

a) FL2500262Q, SMD $3.2 \times 2.5(4 \mathrm{P}), 25 \mathrm{MHz}, \mathrm{CL}=8 \mathrm{pF}, \pm 50 \mathrm{ppm}$, https://www.diodes.com/assets/Datasheets/FL.pdf.
b) FW2500054Q, SMD $2.0 \mathrm{x} 1.6(4 \mathrm{P}), 25 \mathrm{MHz}, \mathrm{CL}=8 \mathrm{pF}, \pm 50 \mathrm{ppm}$, https://www.diodes.com/assets/Datasheets/FW.pdf.

Thermal Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\theta_{\text {JA }}$	Thermal Resistance Junction to Ambient	Still air			44.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$	Thermal Resistance Junction to Case				21.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

PI6CG334Q

Part Marking

	PI6CG33 4Q2ZHWE YYWWX 0
YY: Year	
WW: Workweek	
1st X:Assembly Code	
2nd X: Fab Code	

A Product Line of
Diodes Incorporated
(1) PERICOM

PI6CG334Q

Packaging Mechanical

32-WQFN (ZHW)

For latest package information:
See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Code	Package Code	Package Description	Operating Temperature
PI6CG334Q2ZHWEX	ZHW	W-QFN5050-32 (SWP)	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine $(<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl})$ and $<1000 \mathrm{ppm}$ antimony compounds.
4. $\mathrm{Q}=$ Automotive Compliant
5. $2=$ AEC-Q100 Grade Level
6. $\mathrm{E}=\mathrm{Pb}$-free and Green
7. X suffix $=$ Tape $/$ Reel

A Product Line of Diodes Incorporated

PI6CG334Q

IMPORTANT NOTICE

Abstract

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/ important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries
All other trademarks are the property of their respective owners.
© 2024 Diodes Incorporated. All Rights Reserved.
www.diodes.com

[^0]: Notes:

 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and $<1000 \mathrm{ppm}$ antimony compounds.
 4. Automotive products are AEC-Q100 qualified and are PPAP capable. Refer to https://www.diodes.com/quality/.
