

3.3V, 10Gb/s Type-C USB 3.2 Gen 2/DP 2.1 (UHBR10) 6:4/4:6 Crossbar Switch

Features

- Six Differential Channel to Two/Four Differential Channel **Bidirectional Crossbar Switch**
- USB 3.2 Gen 2 10Gb/s Super Speed and DP 2.1 UHBR10 10Gb/s Switching to USB Type-C[®] Connector
- Supports Either Pin Control or I²C Control to Configure the Mux
- Low Insertion Loss: -1.7dB @ 10Gb/s
- Return Loss: -15dB @ 10Gb/s
- CrossTalk: -38dB @ 10Gb/s
- Off Isolation: -22dB @ 10Gb/s
- -3dB Bandwidth: 8.3GHz
- Multiplexes one of the Following to USB Type-C Connector: USB 3.2 Gen 1/Gen 2 signal only
 - De Cone Lane of USB 3.2 Gen 1/Gen 2 Signal and Two Channels of DP 2.1 UHBR10 or Four Channels of DP 2.1 Signal
- With DP 2.1 UHBR10 Operating, AUX+ and AUX- are Muxed to SBU Pins
 - Max swing on SBU pins are from -0.35V to 3.95V
- 3.0V to 3.6V Power Supply.
- Industrial Temperature Range: -40°C to 85°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/guality/product-definitions/
- Packaging (Pb-free & Green):
 - 40-contact, TQFN (ZLC)

Description

The DIODES[™] PI3USB31532 is a 6:4 differential channel, bidirectional, crossbar switch solution for switching USB 3.2 Gen 1/Gen 2 and/or DP 2.1 signals through USB 3.2 Gen 2 Type-C connector. It multiplexes either one lane of USB 3.2 Gen 1/Gen 2, one lane of USB 3.2 Gen 1/Gen 2, and two channels of DP 2.1 UHBR10 or four channels of DP 2.1 UHBR10 to the USB Type-C connector.

In addition, AUX± channels are also multiplexed to the Type-C connector. The PI3USB31532 offers excellent signal integrity for high-speed signals and low-power dissipation. Insertion loss is -1.7dB, and return loss is -15dB at 10Gb/s speed of USB 3.2 Gen 2 and DP 2.1 UHBR10.

Application(s)

- Routing USB 3.2 Gen 1/Gen 2 SuperSpeed and DP 2.1 UHBR10 signals through the USB Type-C Connector.
- Suitable for Ultrabooks®, 2-in-1 Notebooks, Tablets, Mobile Workstations, All-in-One PCs, Monitors, Docking Stations, Phones

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- $\textit{USB Type-C}^{\texttt{B}} \textit{ and } \textit{USB-C}^{\texttt{B}} \textit{ are registered trademarks of USB Implementers Forum}.$ Ultrabook is a copyright of Intel Corporation

Note:

- 1. The first pinout name (such as RX2+ in RX2+/TX2+) is for source reference schematic in page 4.
- 2. The second pinout name (such as TX2+ in RX2+/TX2+) is for sink reference schematic in page 5.

Pin Description

Pin#	Pin Name	Туре	Description
4, 7, 10, 23, 26, 29, 32	VDD	Power	3.0V to 3.6V power supply. All V_{DD} pins must be tied to external power.
11, 12	TX+/RX+, TX-/RX-	I/O	Differential USB 3.2 Gen 2 Transmit signal (source application) or differential USB 3.2 Gen 2 Receive signal (sink application). Connected internally with 100k Ω pulldown to GND.
16, 17	RX+/TX+, RX-/TX-	I/O	Differential USB 3.2 Gen 2 Receive signal (source application) or differential USB 3.2 Gen 2 Transmit signal (sink application). Connected internally with $100k\Omega$ pulldown to GND.
39, 40	DP0+, DP0-	I/O	Differential DP0 signal.
2, 3	DP1+, DP1-	I/O	Differential DP1 signal.
5, 6	DP2+, DP2-	I/O	Differential DP2 signal.
8, 9	DP3+, DP3-	I/O	Differential DP3 signal.
19, 20	AUX+, AUX-	I/O	Differential Auxiliary signal for DP.
22, 21	SBU1, SBU2	I/O	Sideband signal at Type-C connector.
25, 24	RX1+/TX1+, RX1-/TX1-	I/O	Differential Receive signal 1 at Type-C connector (source application) or differential Transmit signal 1 at Type-C connector (sink application).
28, 27	TX1+/RX1+, TX1-/RX1-	I/O	Differential Transmit signal 1 at Type-C connector (source application) or differential Receive signal 1 at Type-C connector (sink application).
31, 30	TX2+/RX2+, TX2-/RX2-	I/O	Differential Transmit signal 2 at Type-C connector (source application) or differential Receive signal 2 at Type-C connector (sink application).
34, 33	RX2+/TX2+, RX2-/TX2-	I/O	Differential Receive signal 2 at Type-C connector (source application) or differential Transmit signal 2 at Type-C connector (sink application).
22	SBU1/SBU2	I/O	Sideband signal 1 (source application) or side band signal 2 (sink application) at Type-C connector.
21	SBU2/SBU1	I/O	Sideband signal 2 (source application) or side band signal 1 (sink application) at Type-C connector.
1	MODE	Ι	Control mode selection MODE = 1, I2C control = 0, pin control through CONF[2:0]
35, 36, 38	CONF[2:0]	I	Switch configuration selection pin when MODE = 0, refer to <i>Switch Selection Truth Table</i> for detail. When MODE = 1, these pins are part of the I2C interface as SDA/SCL/A1.
38	SDA	I/O	Serial in data of I2C when MODE = 1.
36	SCL	Ι	I2C clock input pin when MODE = 1.
35	A1	Ι	A[1] of A[1:0] I2C selectable address when MODE = 1.
14	A0	I	A[0] of $A[1:0]$ I2C selectable address when MODE = 1.
15, 18, 37, Center Pad	GND	Power	Ground supply.
13	MODE1	Ι	When MODE1 = 0, I2C I/O is 1.8V interface. When MODE1 = 1, I2C I/O is 3.3V interface.

Configuration Table for Source Application (V1.0a)

					V1.0a DP ALT Spec Receptacle DFP_D pin Assignment					
			Type-C USB 3.2 Gen 1/Gen 2 only		C, E (Table 3-1)	C, E Flip (Table 3-2)	D, F (Table 3-1)	D, F flip (Table 3-2)		
Switch	Open	Open	USB 3.2 Gen 1/Gen 2	USB 3.2 Gen 1/Gen 2 Flip	4 Lanes of DP 2.1 UHBR10	4 Lanes of DP 2.1 UHBR10 flip	USB 3.2 Gen 1/ Gen 2 +2 Lanes of DP 2.1 UHBR10	USB 3.2 Gen 1/Gen 2 +2 Lanes of DP 2.1 UHBR10 Flip		
Conf[2:0]	000	001	100	101	010	011	110	111		
ТХ	x	x	TX1	TX2	х	Х	TX1	TX2		
RX	x	x	RX1	RX2	х	Х	RX1	RX2		
DP0	x	x	х	Х	RX2	RX1	RX2	RX1		
DP1	x	x	х	Х	TX2	TX1	TX2	TX1		
DP2	x	x	х	Х	TX1	TX2	X	X		
DP3	x	x	x	Х	RX1	RX2	X	X		
AUX+	x	x	X	Х	SBU1	SBU2	SBU1	SBU2		
AUX-	x	x	X	X	SBU2	SBU1	SBU2	SBU1		

000 = switch open with power down

001 = switch open only, no power down

PI3USB31532 Application Diagram for Source Application

Configuration Table for Sink Application (V1.0a)

			T o		V1.0a DP ALT Spec Receptacle UFP_D pin Assignment					
			Type-C USB 3.2 Gen 1/Gen 2 Only		C (Table 3-3)	C Flip (Table 3-4)	D (Table 3-3)	D Flip (Table 3-4)		
Switch	Open	Open	USB 3.2 Gen 1/Gen 2	USB 3.2 Gen 1/Gen 2 Flip	4 Lanes of DP 2.1 UHBR10	4 Lanes of DP 2.1 UHBR10 flip	USB 3.2 Gen 1/ Gen 2 +2 Lanes of DP 2.1 UHBR10	USB 3.2 Gen 1/Gen 2 +2 Lanes of DP 2.1 UHBR10 Flip		
Conf[2:0]	000	001	100	101	010	011	110	111		
ТΧ	x	x	TX1	TX2	х	Х	TX1	TX2		
RX	x	x	RX1	RX2	х	Х	RX1	RX2		
DP0	x	x	Х	Х	TX2	TX1	TX2	TX1		
DP1	x	x	Х	Х	RX2	RX1	RX2	RX1		
DP2	x	x	Х	Х	RX1	RX2	Х	Х		
DP3	x	x	Х	Х	TX1	TX2	X	Х		
AUX+	x	x	X	X	SBU2	SBU1	SBU2	SBU1		
AUX-	x	x	Х	X	SBU1	SBU2	SBU1	SBU2		

000 = switch open with power down

001 = switch open only, no power down

PI3USB31532 Application Diagram for Sink Application

Note:

Maximum Ratings

(Above which useful life may be impaired. For user guideline	es, not tested.)
Supply Voltage to Ground Potential, $V_{DD} = 3.3V$ 0	0.3V to 4.3V
Control DC Input0.3V to	o V _{DD} +0.3V
Junction Temperature	125°C
Storage Temperature65°C	C to +150°C
Channel DC Input for USB, DP0	0.3V to 1.2V
Channel DC Input for AUX0.3	5V to VDD

 $Stresses\,greater\,than\,those listed\,under\,MAXIMUM\,RATINGS$ may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Parameter	Min.	Тур.	Max.	Unit
Ambient Operating Temperature	-40	—	+85	°C
Power Supply Voltage (Measured in Respect to GND)	3.0	3.3	3.6	V

Static Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage	_	3.0	3.3	3.6	V
Ŧ		VDD = 3.3V all Conf[2:0] states except [000]	_	350	400	μΑ
I _{DD}	VDD Supply Current	VDD = 3.3V Conf[2:0] = 000	_	10	30	μΑ
I _{OFF}	I/O Leakage When Power is Off	VDD = 0V $VIO(USB 3.2 Gen 2) = 0V$ $VIO(DP 2.1) = 0V$ $VIO(AUX) = 0V to 3.6V$ $VIO(SBU) = 0V to 3.6V$	_	_	50	μΑ
Control pir	n (MODE, MODE1)					
I _{IH}	High-Level Digital Input Current	$V_{IH} = VDD$ VDD = 3.6V	_	_	5	μΑ
I _{IL}	Low-Level Digital Input Current	$V_{IL} = GND$ VDD = 3.6V	_	_	5	μΑ
V _{IH}	High-Level Digital Input Voltage	VDD = 3.6V	$0.75 \times \text{VDD}$	—	_	V
VIL	Low-Level Digital Input Voltage	VDD = 3.6V	_	—	0.6	V
Control/I2	C pin (A0, A1, SDA, SCL, when M	MODE = H, MODE1 = H)				
I _{IH}	High-Level Digital Input Current	$V_{IH} = VDD$ VDD = 3.6V	_	_	5	uA
I _{IL}	Low-Level Digital Input Current	$V_{IL} = GND$ VDD = 3.6V	_	_	5	μΑ

Static Characteristics Cont.

Symbol	Parameter	Conditions	Min. Typ.		Max.	Unit
V _{IH}	High-Level Digital Input Voltage	VDD = 3.6V	$0.75 \times \text{VDD}$		_	V
V _{IL}	Low-Level Digital Input Voltage	VDD = 3.6V	_		0.6	V
Control/I	2C pin (A0, A1, SDA, SCL, when N	MODE = H, MODE1 = L)				1
I _{IH}	High-Level Digital Input Current	$V_{IH} = VDD$ $VDD = 3.6V$	_	_	5	μΑ
I _{IL}	Low-Level Digital Input Current	$V_{IL} = GND$ VDD = 3.6V	_	_	5	μΑ
VIH	High-Level Digital Input Voltage	VDD = 3.6V	1.2		_	V
VIL	Low-Level Digital Input Voltage	VDD = 3.6V	_		0.4	V
Control pi	in (CONF[2:0], when $MODE = L$)	1				
I _{IH}	High-Level Digital Input Current	$V_{IH} = VDD$ VDD = 3.6V	_	_	5	μΑ
I _{IL}	Low-Level Digital Input Current	$V_{IL} = GND$ VDD = 3.6V	_	_	5	μΑ
VIH	High-Level Digital Input Voltage	VDD = 3.6V	1.2	—	_	V
VIL	Low-Level Digital Input Voltage	VDD = 3.6V	_	—	0.4	V
I/O pin (T DP2-, DP3	X+, TX-, RX+, RX-, TX1+, TX1-, 3+, DP3-) (AUX+, AUX-, SBU1, SI	RX1+, RX1-, TX2+, TX2-, RX 3U2)	2+, RX2-DP0-	+, DP0-, D	P1+, DP1-	, DP2+,
C _{OFF}	USB 3.2 Gen 2/DP 1.4 switch OFF capacitance	VIO = GND $f = 1MHz$	_	1.2		pF
Con	USB 3.2 Gen 2/DP 1.4 switch ON capacitance	VIO = GND f = 1MHz	_	2.3	_	pF
Coff	AUX+/AUX- switch OFF capaci- tance	VIO = GND $f = 1MHz$	_	4.0	_	pF
Con	AUX+/AUX- switch ON capaci- tance	VIO = GND $f = 1MHz$	_	7.0	_	pF
I _{ozl}	I/O leakage for TX_to_TX1/TX2, RX_to_RX1/RX2 DPx_to_TX/ RX(x = 0, 1, 2, 3) AUX_to_SBUy(y = 1, 2)	VDD = 3.6V, VIO (USB 3.2 Gen 2) = 0V, VIO (DP 2.1) = 0V, VIO (AUX) = 0V	_	1	5	μΑ
I _{ozh}	I/O leakage for TX_to_TX1/TX2, RX_to_RX1/RX2 DPx_to_TX/ RX(x = 0, 1, 2, 3) AUX_to_SBUy(y = 1, 2)	VDD = 3.6V, VIO (USB 3.2 Gen 2) = 1.2V, VIO (DP 2.1) = 1.2V, VIO (AUX) = 4.0V	_	1	15	μΑ

Static Characteristics Cont.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Linear Region for Analog Switch						
Vp_IO	Linear Region for Analog Switch TX_to_TX1/TX2, RX_to_RX1/ RX2 DPx_to_TX/RX(x = 0, 1, 2, 3)	VDD = 3.3V, Ipass = 10mA	1.4	1.6	_	V
Vp_IOSB	Linear Region for Analog Switch AUX_to_SBUx(x = 1, 2)	VDD = 3.3V, Ipass = 10mA	4.0	4.2	_	V

Dynamic Characteristics

Min and Max apply for T_A between -40°C to 85°C. Typical values are referenced to $T_A = 25$ °C.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
tstartup	Startup Time	Supply voltage valid or (*) the device is pow- ered up & channel is turn on to its specified characteristics VDD = 3V		10	20	μs
trcfg	Reconfiguration Time	Conf[2:0] change to channel specified operat- ing characteristics	—	1	2	
tpd	Propagation Delay 1	From input port to output port USB/DP	—	80	_	ps
tpd	Propagation Delay 2	From input port to output port AUX	—	150	_	ps
tsk	Skew Time 1	From input port to output USB/DP Bit to bit skew	_	10	_	ps
tsk	Skew Time 2	From input port to output AUX Bit to bit skew	—	20	_	ps
VI_usb_dp	USB/DP Input Signal	USB/DP switch analog signal	-0.3	_	1.2	V
VI_aux	AUX+/AUX- Input Signal	AUX switch analog signal	-0.35		VDD	V

* Conf[2:0] changes from [000] to [001]/[010]/[011]/[100]/[101]/[110]/[111]

Switch AC Electrical Characteristics

Min and Max apply for T_A between -40°C to 85°C and T_J up to +125°C (unless otherwise noted). Typical values are referenced to $T_A = +25^{\circ}C$, $V_{DD} = 3.3V$.

Symbol	Parameter	Frequ	uency/Vcom	Тур.	Units
BW_usb/dp	-3dB bandwidth of USB 3.2 Gen 2/DP 2.1	_	—	8.3	GHz
IL		5GHz/0V	USB 3.2 Gen 2/DP 2.1	-1.7	
	Differential Insertion Loss	4.1GHz/ 0V	DP 1.4	-1.6	
D		5GHz/0V	USB 3.2 Gen 2/DP 2.1	-15	
KL	Differential Return Loss	4.1GHz/ 0V	DP 1.4	-14	σĿ
V4-11-		5GHz/0V	USB 3.2 Gen 2/DP 2.1	-38	dВ
Xtalk		4.1GHz/ 0V	DP 1.4	-33	
Xoff		5GHz/0V	USB 3.2 Gen 2/DP 2.1	-22	
	On Isolation	4.1GHz/ 0V	DP 1.4	-25	

I2C Control

** I2C Function Reference:

" THE I2C-BUS SPECIFICATION, VERSION 2.1"

I2C Control register:

	Register Bits							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Slave address (First byte is slave address)	1	0	1	0	1	A1	A0	0/1 (W/R)
Vendor ID (Second byte is vendor ID, read only)	0	0	0	0	0	0	0	0
Selection control (Third byte is for selection control, read/write)	0	0	0	0	0	conf[2]	conf[1]	conf[0]

Note:

1. Bit7 - Bit3 = Version ID (00000) in (01H)

2. Bit2 - Bit0 = Pericom Vendor ID (000) in (01H)

3. A0, A1 are hardware selectable (pin35, pin36)

4. conf[2]/conf[1]/conf[0] are written into the register by the master PI3USB31532 will decode Bit2 - Bit0 in (02h) for I2C control (Pin1/MODE = 1). Default powerup state is 000.

I²C Electrical Characteristics

Symbol	Parameter	Standard Mode (100kHz)		Fast Mode (400kHz)		Fast Mode Plus (1MHz)		Units
		Min	Max	Min	Max	Min	Max	
f _{SCL}	SCL Clock Frequency	0	100	0	400	0	1000	kHz
t _{HD:STA}	Hold Time (repeated) START Condition	4.0	_	0.6	_	0.26	_	μs
t _{LOW}	LOW Period of the SCL Clock	4.7	_	1.3	_	0.5	_	μs
t _{HIGH}	HIGH Period of the SCL Clock	4.0	_	0.6	_	0.26	_	μs
t _{SET:STA}	Setup Time for a Repeated START Condition	4.7	_	0.6	_	0.26	_	μs
t _{HD:DAT}	Data Hold Time	0	3.45	0	0.9	0	0.33	μs
t _{set:dat}	Data Setup Time	250	_	100	_	50	_	ns
t _f	Fall Time of both SDA and SCL Signals	_	300	_	300	_	120	ns
t _r	Rise Time of both SDA and SCL Signals	_	1000	_	300	_	120	ns
t _{set:sto}	Setup Time for STOP Condition	4.0	_	0.6	_	0.26	_	μs

Bus Transactions

Data transfers follow the format shown in Fig.A1 After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit, which is a data direction bit (R/W)—a 'zero' indicates a transmission (WRITE), and a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (S) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.

Figure A1: A Complete Data Transfer

Data is transmitted to the PI3USB31532 registers using the Write mode as shown in Figure 2. Data is read from the PI3USB31532 registers using the Read mode as shown in Figure A2.

Figure 2: Write to Control Register

Figure A2: Read to Control Register

Part Marking

PI3USB 31532ZLCE YYWWXX 0

YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical: 40-TQFN (ZLC)

21-1406

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Code	Packaging Code	Package Description
PI3USB31532ZLCEX	ZLC	40-Pin, 3mm x 6mm (TQFN) (W-QFN3060-40)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IM-1. PI IFD WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IM-PI IFD WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from 3. time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

Products described herein may be covered by one or more United States, international or foreign patents and pending pat-4. ent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/termsand-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6 Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7 While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8 Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

DIODES is a trademark of Diodes Incorporated in the United States and other countries. The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. © 2022 Diodes Incorporated. All Rights Reserved.

www.diodes.com