

A Product Line of Diodes Incorporated

10Gbps, 2-Port, USB 3.1 Mux/Demux ReDriver[™] with Integrated USB-C Detector

Features

ReDriver

- → 10Gbps Serial Link with Linear Equalizer
- ➔ Full Compliancy to USB 3.1 Gen-2 and Gen-1 Super-Speed Standard
- → 1-to-2 DeMux from Host Tx to Device Rx
- → 2-to-1 Mux from Device Tx to Host Rx
- ➔ Adjustable Output Linear Swing, Flat Gain and Equalization via I2C or Pin Control
- → 100 Ω Differential CML I/Os
- ➔ Automatic Receiver Detect
- → Auto "Slumber" Mode for Adaptive Power Management
- → Supply Voltage 3.3V

Plug-in Detector

- → USB Type-C Specification 1.3
- → Supports SOURCE/SINK/DRP Modes
- → Support DRP Modes with Try.SNK/Try.SRC
- → Auto-Configure Ports Orientation through CC Detection
- ➔ Supports VCONN to Power Active Cables and Other Accessories
- ➔ Supports Overcurrent Protection and Overvoltage Protection for VCONN
- → Allow Both Pin Control and I2C Interface
- ➔ Integrated Power Switches, High-Precision Resistors and Current Sources for CC Pins
- ➔ Provides Support for Default USB Power, 1.5A, and 3A SOURCE Modes with I2C Control and Pin Control
- → Output Indicator for Plug-in Detection
- ➔ Power-Saving Mode
- → 24V Tolerance on CC1, CC2 and VBUSDET
- → Power Supply Range: 3.0V to 5.0V
- → Temperature Range: -40°C to 70°C
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → Packaging (Pb-free & Green):
 - 42-contact, ZH42 (3.5mm × 9mm)

Applications

- → Notebooks
- ➔ Mobile Phones
- → Tablets
- ➔ Docking Station

Description

PI3EQX10312 is a low-power, high-performance 10Gbps 2-Port USB 3.1 Gen-2/Gen-1 Mux/DeMux ReDriver with Plug-in Detector for Type-C connector.

The device includes two main function blocks:

- 1) The 2 Port Mux/DeMux ReDriver
- 2) The Plug-in Detector for USB-C Connector

The 2 Port Mux/Demux ReDriver

The ReDriver provides programmable equalization, swing, and flat gain to optimize performance over a variety of physical mediums by reducing intersymbol interference. The ReDriver supports two 100 Ω differential CML data I/Os between the protocol ASIC to a switch fabric, over cable, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver. A low-level input signal detection and output squelch function is provided for each channel. Each channel operates fully independently. The channels' input signal level determines whether the output is active.

The ReDriver also includes an adaptive power management feature to maximize battery life for power-sensitive consumer devices.

The Plug-in Detector for USB-C Connector

The plug-in detector detects the plug-in orientation of the cable at a USB-C connector. It supports the port to configure as SOURCE mode, SINK mode, and DRP modes and automatically connects based on the voltage levels detected on CC pin. It is a fully-integrated solution with ultra-low power dissipation.

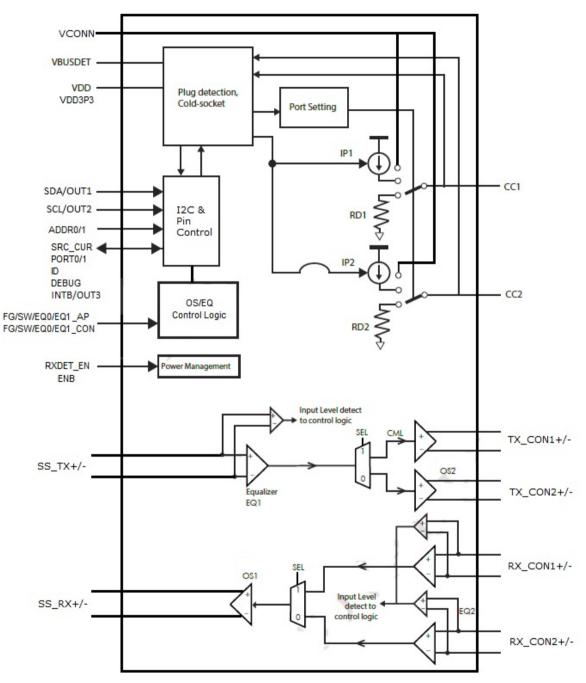
The plug-in detector supports both pin and I2C control based on ADDR1 pin setting. It allows the system to choose between pin control and I2C control mode.

In pin control mode, the PORT0 and PORT1 input pins determine the port setting in which the SOURCE, SINK, or DRP port can be selected. In SOURCE and DRP modes, the SRC_CUR input pin selects USB Type-C current advertisement at default USB, 1.5A, and 3A level. The system running in source mode can monitor ID pin to know the connector attached or not. Systems running in SINK mode can monitor system's VBUS for connector status as well as OUT1, and OUT2 for host's charging profile capability. DEBUG and OUT3 pins also indicate if a debug or audio accessory is attached.

The plug-in detector provides VCONN function to power active cables and other accessories through VCONN pin. Low-resistance power switches are integrated in the chip-to-connect CC1/CC2 pins to VCONN pin.

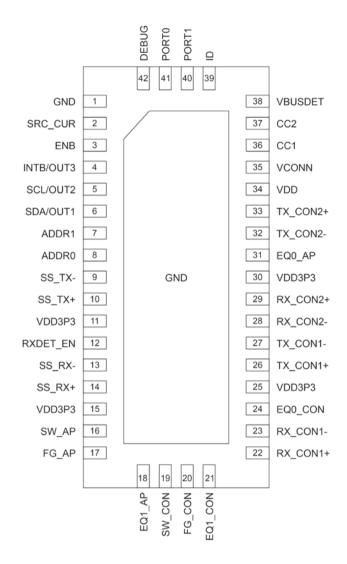
Enabling I2C control mode allows high flexibility for port control and communications through registers read/write. An interrupt signal for indicating changes with the I2C registers is sent to the master to notify the system any change in the USB-C connector while in parallel the system can still monitor ID pin.

Notes:


^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

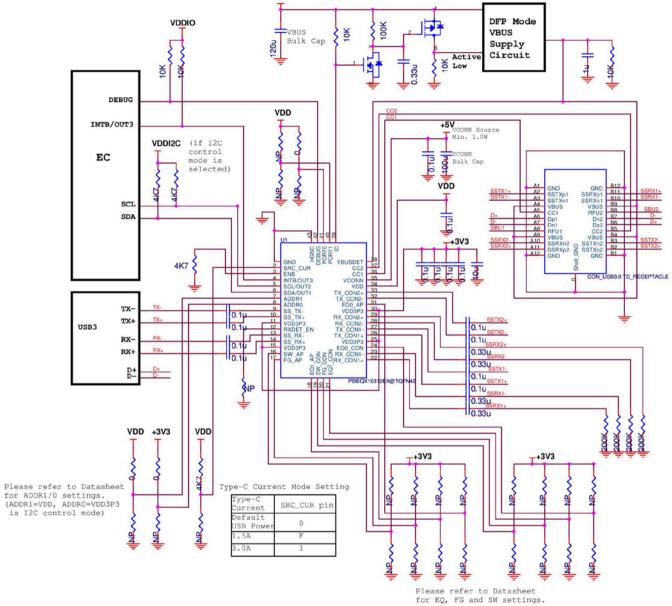
See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Block Diagram



A Product Line of Diodes Incorporated

Pin Configuration



Application Diagram

+5V

Pin Descriptions

Pin #	Pin Name	I/O	Description
1, Thermal PAD	GND	Ground	Ground pin. Thermal Pad.
2	SRC_CUR	Ι	Tri-level input pin to indicate SOURCE current mode (for pin control only): PORT=floating – SOURCE 1.5A current mode; PORT=VDD – SOURCE 3A current mode; PORT=GND – SOURCE Default current mode
3	ENB	Ι	Active-low enable input pin (with internal weak pull high): ENB=VDD – Disabled/Low Power State ENB=GND – Enabled/Active State
4	INTB/OUT3	0	Open-drain output. In I2C control mode, this is an active LOW interrupt signal for indicating changes in I2C registers. Dual function as analog audio-adapter detection in pin control mode: OUT3=Hi-Z – Not detected; OUT3=Low – Analog audio adapter detected
5	SCL/OUT2	I/O	I2C communication clk signal. Dual function as open-drain Type-C Current Mode Detected in pin control mode when port is a SINK; <u>OUT2 OUT1 Current Mode</u> Hi-Z Hi-Z Default Hi-Z Low Medium Low Low High
6	SDA/OUT1	I/O	I ² C communication data signal. Dual function as open-drain Type-C Current Mode Detected in pin control mode when port is a SINK; <u>OUT2 OUT1 Current Mode</u> Hi-Z Hi-Z Default Hi-Z Low Medium Low Low High
7, 8	ADDR1, ADDR0	Ι	Multi-level input pins to indicate I ² C address or pin control mode of USB-C Detector and ReDriver: Please refer to Table of I ² C Slave Address.
10, 9 22, 23 29, 28	SS_TX+, SS_TX-, RX_CON1+, RX_CON1-, RX_CON2+, RX_CON2-	Ι	Input terminals. With selectable input termination between 50 Ω to VDD, 75k Ω to VbiasRX, or 75k Ω to GND.
11, 15, 25, 30	VDD3p3	Power	Dedicated 3.3V Power Supply.
12	RXDET_EN	Ι	ReDriver Loading Detection Enable Pin: 1 = ReDriver Loading Detection Enabled (Default Setting in Application) 0 = ReDriver Loading Detection Disabled
14, 13 26, 27 33, 32	SS_RX+,SS_RX-, TX_CON1+,TX_CON1-, TX_CON2+, TX_CON2-	0	Output terminals. With selectable output termination between 50 Ω to VbiasTx, 6k Ω to VbiasTx, 75k Ω to VbiasTx, and 75k Ω to GND.
16, 17, 18, 31	SW_AP FG_AP EQ1_AP, EQ0_AP	Ι	SW/FG/EQ setup for USB channels with receiver terminal is connected to AP Side.
19, 20, 21, 24	SW_CON FG_CON EQ1_CON, EQ0_CON	Ι	SW/FG/EQ setup for USB channels with receiver terminal is connected to Connector Side.
34	VDD	Power	Positive supply voltage from VBAT.
35	VCONN	Power	Supply voltage for VCONN.

Pin #	Pin Name	I/O	Description
36	CC1	I/O	Type-C configuration channel 1 signal.
37	CC2	I/O	Type-C configuration channel 2 signal.
38	VBUSDET	Ι	VBUS detection.
39	ID	0	Open-drain output. Asserted low when CC pin detected device attachment when port is a Host (or dual-role acting as Host), otherwise ID is hi-z.
40, 41	PORT1,PORT0	Ι	Tri-level input pins to indicate port mode (for pin control only).
42	DEBUG	Ο	Open drain output for Debug Accessory Detection. Open drain output. Asserted low when CC pin detected Debug Accessory attachment; otherwise, DEBUG pin is Hi-Z.

Maximum Ratings

V		
Storage Temperature	-65 to 150	°C
Battery Supply Voltage	-0.5 to 6	V
3.3V Supply Voltage	-0.5 to 3.8	V
System VBUS Voltage Detection	-0.5 to 24	V
VCONN Supply Voltage Range	-0.5 to 6	V
CC1, CC2 Input Voltage	-0.5 to 24	V
Voltage of IO Pins (ENB, ADDR1, PORT1, PORT0 SRC_CUR, INTB/OUT3, ID, DEBUG)	-0.5 to 6	V
Voltage of 3.3V IO Pins (SCL/OUT2, SDA/OUT1, RXDET_EN, ADDR0, SW_AP,FG_AP, EQ1_AP, EQ0_AP,SW_CON,FG_CON, EQ1_CON,EQ0_CON)	-0.5 to VDD3P3+0.5	V
Voltage of SS_TX+/-,SS_RX+/-,TX_CON1/2 +/-, RX_CON1/2 +/-	-0.5 to VDD3P3+0.5	V
Output Current from CC1, CC2	Internally Limited	_
Sink Current from CC1, CC2	30	mA
Sink Current from ID, DEBUG, INTB/OUT3, SCL/OUT2, SDA/OUT1	10	mA
Continuous Input Current to SS_TX+/-, RX_CON1/2 +/-	±30	mA
ESD (HBM)	2KV	_

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Symbol	Parameter	Min.	Max.	Units
V _{DD}	Battery Supply Voltage	3.0	5.5	V
V _{DD3P3}	3.3V Supply Voltage	3.0	3.6	V
V _{BUSDET}	System VBUS Voltage Detection	0	22	V
V _{BAT TH}	Battery Supply Undervoltage Lockout	2.2	2.65	V
V _{CONN}	VCONN Supply Voltage Range	2.7	5.5	V
V _{IN_CC12}	CC1, CC2 Input Voltage	0	5.5	V
V _{IO}	Voltage of IO pins (ENB, ADDR1, PORT1, PORT0 SRC_CUR, INTB /OUT3, ID, DEBUG)	0	5.5	v
V _{IO3P3}	Voltage of 3.3V IO pins (SCL/OUT2, SDA/OUT1, RXDET_EN, ADDR0, SW_AP,FG_AP, EQ1_AP, EQ0_AP, SW_CON, FG_CON, EQ1_CON, EQ0_CON)	0	3.6	v
V _{TXRX}	Voltage of SS_TX+/-,SS_RX+/-,TX_CON1/2 +/-, RX_CON1/2 +/-	0	3.6	V
V _{NOISE}	Supply Noise up to 50MHz	_	100	mVpp
T _A	Operating Temperature	-40	70	°C

USB-C Detector DC Electrical Characteristics

Min and Max apply for T_A between -40°C to 85°C (unless otherwise noted). Typical values are referenced to $V_{DD}=3.6V$, $T_A=+25°C$

$\frac{T_A = +25^{\circ}C}{Symbol}$	Dovomotov	Test Conditions	Min	True	Mar	Units
V	Parameter Configuration (Device Mode, SNK)	Test Conditions	Min.	Тур.	Max.	Units
-	Device Mode Pulldown Resistor		4.6	5.1	56	kΩ
R _D		—	4.0	1.23	5.6 1.31	V
V _{TH3_SNK}	High Current Mode Entry Threshold Medium Current Mode Entry Threshold	-	0.61	0.66	0.70	V
		—	0.01			V
V _{TH1_SNK}	Default Current Mode Entry Threshold	—	0.15	0.2	0.25	v
	Configuration (Host Mode, SRC)	Default current mode	64	80	06	
т	Host Mode Pullup Current Source	Medium current mode (1.5A)	64 166	180	96 194	
I _P	Host Mode Fullup Cultent Source	High current mode (3A)	304	330	356	μA
V _{OPEN}	CC Open Voltage	$V_{DD} = 2.7 V \text{ to } 5.5 V$	304	550	550	
V OPEN	ee open vonage	Default/Medium/High current mode	2.6	_	-	V
CC1/CC2 (Configuration (DRP)					
t	The Period a DRP Shall Complete a Source to	$V_{DD} = 3.6 V$	50	75	100	me
t _{DRP}	Sink and Back Advertisement	$v_{\rm DD} = 3.0 v$	50	15	100	ms
VBUS Dete						
V _{VBUS}	VBUS Detection Threshold (Rising)	—	1.7	2.2	2.7	V
	VBUS Detection Hysteresis	—	—	0.1	—	V
VCONN						
R _{VCONN}	VCONN Switch On-Resistance	$I_{LOAD} = -100 \text{mA}, V_{CONN} = 5 \text{V}$	—	1	—	Ω
I _{VCONN} @80% V _{CONN}	VCONN Output Current at 80% VCONN	$V_{\text{CONN}} = 5V$, Vcc1 or Vcc2 = 4V	500	570	650	mA
VOVP	CC1 & CC2 Overvoltage Protection		5.5	6.0	6.5	V
	Ĭ	V_{CC1} or $V_{CC2} = 14V$, $V_{DD} = 3.6V$, ENB = 3.6V	_	_	13	
I _{OVP}	Sink Current into CC1 or CC2 During OVP	V_{CC1} or $V_{CC2} = 24V$, $V_{DD} = 3.6V$, ENB = 3.6V	_	_	30	mA
Host Interf	ace Pins (SDA/OUT1, SCL/OUT2, INTB/OU	T3, DEBUG, ID)				
V _{OL}	Output Low Voltage at		0		0.4	V
• OL	3mA Sink Current (Open-Drain)		0		0.4	v
I _{OFF}	Off-State Leakage Current	—	—	—	1	μΑ
	rol Pins (ENB, SDA/OUT1, SCL/OUT2)				•	
V _{IH}	High-Level Input Voltage	—	1.05	—	—	V
V _{IL}	Low-Level Input Voltage	<u> </u>	—	—	0.4	V
I _{IH_LOGIC}	High-Level Input Current	$Pin = V_{DD}$	-1	—	1	μA
I _{IL_LOGIC}	Low-Level Input Current	Pin = 0V	-1	—	1	μA
Tri-State I	nput Control Pins (PORT1, PORT0, SRC_C	UR)				
V3 _{IH}	High-Level Input Voltage	-	VDD- 0.4	_	_	V
V3 _{IL}	Low-Level Input Voltage	—			0.4	V
I _{IH_3STATE}	High-Level Input Current	$Pin = V_{DD}$	-5	_	5	μA
I _{IL_3STATE}	Low-Level Input Current	Pin = 0V	-5	_	5	μA
ADDR1 Pi	<u>n</u>					
	Resistor to GND (Pin Control Mode)	—	—	—	100	Ω
	Resistor to GND (I2C Address 1010101X)	_	7.79K	8.2K	8.61K	Ω
	Resistor to GND (I2C Address 1110101X)	—	15.2K	16K	16.8K	Ω
	Resistor to GND (I2C Address 1000101X)	—	22.8K	24K	25.2K	Ω
	Resistor to VDD (I2C Address 1100101X)		_	_	100	Ω

A Product Line of Diodes Incorporated

VDD Curre	ent Consumption					
	Operating Current, Device Mode	$V_{DD} = 3.6V$, SNK connects to SRC	_	40	65	μA
I _{DD}	Operating Current, Host Mode	V _{DD} = 3.6V,SRC Connects to SNK Default Current Mode	—	150	200	μΑ
I _{DEV_STBY}	Device Mode Standby Current	$V_{DD} = 3.6V$, Floating CC1 and CC2	—	40	65	μA
I _{DUAL_STBY}	Dual-Role Mode Standby Current	$V_{DD} = 3.6V$, Floating CC1 and CC2	—	55	80	μA
I _{HOST_STBY}	Host Mode Standby Current	$V_{DD} = 3.6V$, Floating CC1 and CC2	_	70	95	μA
I _{DISABLE}	Chip is Disabled	ENB=VDD	_	_	5	μA
I _{PWRSAVING}	Chip is in Power Saving Mode	Bit [7] of Control Register (01H)=1	_	_	40	μA
Thermal Sl	nutdown					
T _{OTP}	Thermal Shutdown Threshold	—	_	155	_	°C
T _{hys}	Thermal Shutdown Hysteresis	_	_	20	_	°C

PI3EQX10312

ReDriver AC/DC Electrical Characteristics

Power Consumption (VDD3P3)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{PD}	Typical Pin Power Down Current	USB-C is Unattached	_	26	100	μΑ
I _{DDQ_PD}	I2C Power Down Current	USB-C is Attached I2C Byte4<7:4>=1111	_	_	340	μΑ
USB 3.1 Ger	n 2 Mode					
I _{U0}	Current in USB U0 Mode	USB U0 Mode	_	80	112	mA
I _{U1}	Current in USB U1 Mode	USB U1 Mode	—	16	20	mA
I _{U2/U3}	Current in USB U2/U3 Mode	USB U2/U3 Mode	—	0.5	0.6	mA
I _{RXDET}	Current RXDET Mode	RXDET Mode	_	0.5	0.6	mA
	rol pins (FG_AP, FG_CON, EQ1_	AP, EQ0_AP, EQ1_CON,EQ	0_CON)			
V _{IH}	DC INPUT LOGIC HIGH	—	0.92×VDD3P3	VDD3P3	_	V
V _{IF}	DC Input Logic "Float"	—	0.59×VDD3P3	0.67×VDD3P3	0.75×VDD3P3	V
V _{IR}	DC Input Logic with Rext to GND	_	0.25×VDD3P3	0.33×VDD3P3	0.41×VDD3P3	V
V _{IL}	DC Input Logic Low	_	_	GND	0.08×VDD3P3	V
I _{IH}	Input High Current	—	—	—	50	μA
I _{IL}	Input Low Current	—	-75	—	—	μA
Rext	External Resistance Connects to GND (±5%)	_	64.6	68	71.4	kΩ
2-level contr	rol pins (ADDR0, RXDET_EN, SV	V_AP, SW_CON)	•			
V _{IH}	DC Input Logic High	—	2.0	_	_	V
V _{IL}	DC Input Logic Low	—	—	—	0.8	V
I _{IH}	Input High Current	—	—	_	25	μA
I _{IL}	Input Low Current	—	-25	—	—	μA

USB Differential Channel

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
USB Differentia	l Input	•				
C _{RXPARASITIC}	The Parasitic Capacitor for RX	—	_	_	1.0	pF
R _{RX-DIFF-DC}	DC Differential Input Impedance	-	72		120	Ω
R _{RX-SINGLE-DC}	DC Single-ended Input Impedance	DC impedance limits are required to guarantee RxDet. Measured with respect to GND over a voltage of 500mV max.	18	_	30	Ω
Z _{RX-HIZ-DC-PD}	DC Input CM Input Impedance for V>0 During Reset or Power Down	(Vcm = 0 to 500mV)	25	_	_	kΩ
C _{AC_COUPLING}	AC Coupling Capacitance	_	75	_	265	nF
V _{RX-CM-AC-P}	Common Mode Peak Voltage	AV up to 5GHz	_	_	150	mVpeak
V _{RX-CM-DC-Active-} Idle-Delta-P	Common Mode Peak Voltage	Between U0 and U1, Active up to 5GHz	_	_	200	mVpeak
USB Differentia	l Output					
V _{TX-DIFF-PP}	Output Differential p-p Voltage Swing	Differential Swing V _{TX-D+} -V _{TX-D-}	_	_	1.2	Vppd
R _{TX-DIFF-DC}	DC Differential TX Impedance	-	72	_	120	Ω
V _{TX-RCV-DET}	The Amount of Voltage Change Allowed During RxDet	-	_	_	600	mV
C _{ac_coupling}	AC Coupling Capacitance	-	75	_	265	nF
T _{TX-EYE(10Gbps)}	Transmitter eye, Include all Jitter	At the silicon pad; 10Gbps	0.646	_	—	UI
T _{TX-EYE(5Gbps)}	Transmitter eye, Include all Jitter	At the silicon pad; 5Gbps	0.625	_	_	UI
T _{TX-DJ-DD(10Gbps)}	Transmitter Deterministic Jitter	At the silicon pad; 10Gbps	_	_	0.17	UI

PI3EQX10312

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
T _{TX-DJ-DD(5Gbps)}	Transmitter Deterministic Jitter	At the silicon pad; 5Gbps	_	_	0.205	UI
C _{TXPARASITIC}	The Parasitic Capacitor for TX		_	_	1.1	pF
R _{TX-DC-CM}	Common Mode DC Output	_	18		30	Ω
	Impedance		18	_	30	12
V _{TX-DC-CM}	The Instantaneous Allowed DC	$ V_{TX-D+}+V_{TX-D-} /2$				
	Common Mode Voltage at the		0	_	2.2	V
	Connector Side of the AC		Ŭ			
	Coupling Capacitors		UDD			
V _{TX-C}	Common-Mode Voltage	$ V_{TX\text{-}D\text{-}} + V_{TX\text{-}D\text{-}} /2$	VDD- 2V	—	VDD	V
V _{TX-CM-AC-PP-}	Active Mode TX AC Common	$V_{TX-D+}+V_{TX-D-}$ for both time and				
Active	Mode Voltage	amplitude	—	_	100	mVpp
	Common Mode Delta Voltage					
V _{TX-CM-DC-}	$ Avg_{uo}(V_{TEX-D+} + V_{TX-D-})/2 -$	Between U0 to U1	—	—	200	mV-peak
Active_Idle-Delta	$Avg_{u1}(V_{TX-D+} + V_{TX-D-})/2 $					
		Between Tx+ and Tx- in idle				
		mode.				
V _{TX-Idle-Diff-AC-pp}	Idle Mode AC Common Mode	Use the HPF to remove DC	_	_	10	mVppd
та-вас-ра	Delta Voltage V _{TX-D+} -V _{TX-D-}	components. =1/LPF.				TT -
		No AC and DC signals are				
		applied to Rx terminals. Between Tx+ and Tx- in idle				
		mode.				
	Idle Mode DC Common Mode	Use the LPF to remove DC				
V _{TX-Idle-Diff-DC}	Delta Voltage $ V_{TX-D+}-V_{TX-D-} $	components. $=1/HPF$.	—	—	10	mV
	Dena vonage v _{TX-D+} - v _{TX-D-}	No AC and DC signals are				
		applied to Rx terminals.				
		EQ<3:0>=0000		7.0		
	Peaking Gain (Compensation at	EQ<3:0>=0101		9.5		
G _p	5GHz, Relative to 100MHz,	EQ<3:0>=0101 EQ<3:0>=1010	—	11.77	—	dB
Op	$100 \text{mV}_{\text{p-p}}$ Sine Wave Input)	EQ<3:0>=1111		13.54		
	room v _{p-p} ome wave mpacy	Variation around typical	-3	_	+3	dB
		FG<1:0>=00		-2.07		
		FG<1:0>=01		-0.24		15
G _F	Flat Gain (100MHz,	FG<1:0>=10	—	+0.5	—	dB
-1	EQ<3:0>=0000, SW<1:0>=01)	FG<1:0>=11		+1.77		
		Variation around typical	-3	_	+3	dB
X 7	-1dB Compression Point Output	SW<1:0>=00		900		
$V_{SW_{100M}}$	Swing (at 100MHz)	SW<1:0>=01	—	1000	—	mVppd
V	-1dB Compression Point Output	SW<1:0>=00		600		mVppd
V _{SW_5G}	Swing (at 5GHz)	SW<1:0>=01	_	750	_	ni v ppu
DD _{NEXT} ^{Note3}	Differential Near-End Crosstalk	100MHz to 5GHz	_	-35	_	dB
DD _{FEXT} Note3	Differential Far-End Crosstalk	100MHz to 5GHz	—	-35	_	dB
		100MHz to 5GHz, FG<1:0>=11,		0.6	_	
V _{NOISE-INPUT}	Input-Referred Noise	EQ<3:0>=0000, SW<1:0>=01		0.0		mV _{RMS}
V NOISE-INPUT		100MHz to 5GHz, FG<1:0>=11,	_	0.5	_	III V RMS
		EQ<3:0>=1111, SW<1:0>=01		0.5		
		100MHz to 5GHz, FG<1:0>=11,	_	0.8	_	
V _{NOISE-OUTPUT}	Output-Referred Noise ²	EQ<3:0>=0000, SW<1:0>=01		0.0		mV _{RMS}
· NOISE-OUTPUT		100MHz to 5GHz, FG<1:0>=11,	_	1	_	··· · KMS
		EQ<3:0>=1111, SW<1:0>=01				
S11	Input Return Loss	10MHz to 5GHz differential	_	-13.0	_	dB
~ • • •		1GHz to 5GHz common mode	—	-6.0	—	<u>u</u> D
S22	Output Return Loss	10MHz to 5GHz differential	_	-15	_	dB
944	Sulput Ketulli Loss	1GHz to 5GHz common mode	_	-6.0	_	uD

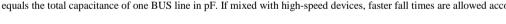
Signal and F	requency Detectors					
V _{TH_UPM}	Unplug Mode Detector Threshold	Threshold of LFPS when the input impedance of the ReDriver is $67k\Omega$ to VbiasRx only. Used in the unplug mode.	ReDriver 200		800	mVppd
V_{TH_DSM}	Deep Slumber Mode Detector Threshold	LFPS signal threshold in Deep slumber mode	100	-	600	mVppd
V_{TH_AM}	Active Mode Detector Threshold	Signal threshold in Active and slumber mode	65	-	175	mVppd
F _{TH}	LFPS Frequency Detector	Detect the frequency of the input CLK pattern	100	-	400	MHz
T _{ON_UPM}	Turn on of Unplug Mode	TV siste DV sis lateral large	-	_	3	mS
T _{ON-DSM}	Turn on of Deep Slumber Mode	TX pin to RX pin latency when input signal is LFPS	<u> </u>		5	μS
T _{ON_SM}	Turn on of Slumber Mode		_	_	20	ns

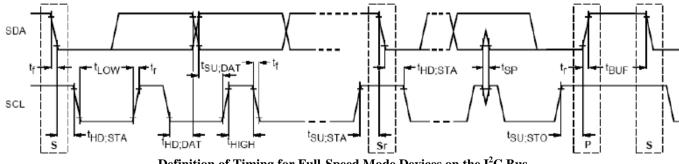
Note:

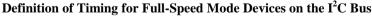
1. Measured using a vector-network analyzer (VNA) with -15dbm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω .

2. Guaranteed by design and characterization.

3. Subtract the Channel Gain from the Total Gain to get the Actual Crosstalk.

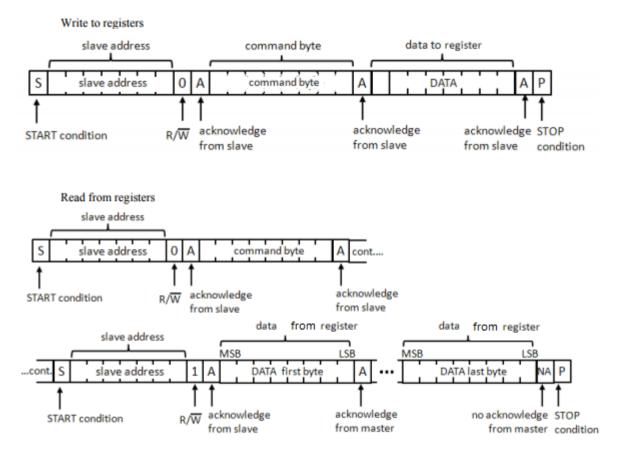

I²C AC Electrical Characteristics


Symbol	Parameter	Standar I ²		Fast Mode I ² C		Fast Mode Plus I ² C		Unit
Symbol		Min Max Min Max		Max	Min	Max	Umt	
f _{SCL}	SCL Clock Frequency	0	100	0	400	0	1000	kHz
t _{BUF}	Bus Free Time Between a STOP and START Condition	4.7	_	1.3	_	0.5	_	μs
t _{HD;STA}	Hold Time (Repeated) START Condition	4.0	_	0.6	_	0.26	_	μs
t _{SU;STA}	Setup Time for a Repeated START Condition	4.7	—	0.6	—	0.26	_	μs
t _{SU;STO}	Setup Time for STOP Condition	4.0	—	0.6	—	0.26	—	μs
t _{VD;ACK} ^[1]	Data Valid Acknowledge Time	_	3.45	_	0.9	_	0.45	μs
t _{HD;DAT} ^[2]	Data Hold Time	0	_	0	_	0	—	ns
t _{VD;DAT}	Data Valid Time	_	3.45	_	0.9	—	0.45	ns
t _{SU;DAT}	Data Setup Time	250	_	100	_	50	—	ns
t _{LOW}	LOW Period of the SCL Clock	4.7	_	1.3	_	0.5	—	μs
t _{HIGH}	HIGH Period of the SCL Clock	4.0	_	0.6	_	0.26	—	μs
$t_{\rm f}$	Fall Time of both SDA and SCL Signals	_	300	—	300	_	120	ns
t _r	Rise Time of Both SDA and SCL Signals	_	1000	_	300	_	120	ns
t _{SP}	Pulse Width of Spikes that must be Suppressed by the Input Filter	_	50	_	50	_	50	ns


Notes:

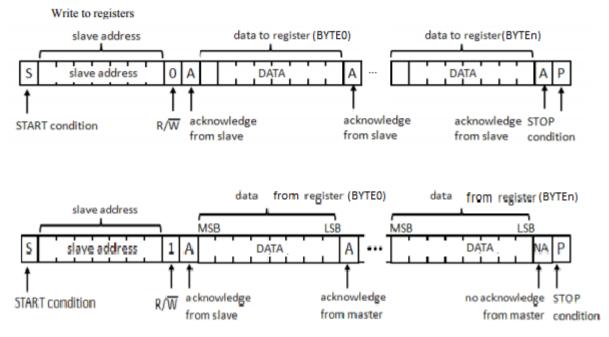
1. A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement $t_{SETDAT} \ge 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr_max + $t_{SETDAT} = 1000 + 250 = 1250$ ns (according to the standard-mode l²C bus specification) before the SCL line is released.

2. C_b equals the total capacitance of one BUS line in pF. If mixed with high-speed devices, faster fall times are allowed according to the l²C specification.



I²C Slave Address

ADDR1	ADDR0	USB-C Detector I2C Slave Address	ReDriver I2C Slave Address
VDD	VDD3P3	CAh	A4h
24KΩ to GND	VDD3P3	8Ah	A0h
16KΩ to GND	VDD3P3	EAh	A6h
8.2KΩ to GND	VDD3P3	AAh	A2h
VDD	GND	CAh	Pin Mode
24KΩ to GND	GND	8Ah	Pin Mode
$16 \mathrm{K}\Omega$ to GND	GND	EAh	Pin Mode
8.2 K Ω to GND	GND	AAh	Pin Mode
GND	GND	Pin Mode	Pin Mode


I²C Data Transfer (USB-C Detector Registers)

I²C Data Transfer (ReDriver Registers)

*Registers of ReDriver can be Read/Written in Bulk Mode Only

USB-C Detector Detailed Description

The PI3EQX10312 includes a cost-effective plug-in detector for USB 3.1 Gen2 Type-C connector. It flexibly supports both I2C and pin control mode to configure the port and report the detection results.

ADDR1

ADDR1 is a five-level input pin to indicate I2C or pin control mode of USB-C detector. When ADDR1 pin shorts to GND, the detector sets to pin control mode. When ADDR1 is connected via various resistors to GND or pulled up to VDD, I2C mode is enabled, and I2C address is set according to the connection of ADDR1 (see Table of I2C Slave Address).

I2C Mode Configuration

The PI3EQX10312 requires minimal configuration for proper detection and reporting. Write register 01H (control register) to configure different charging profiles and port settings.

Processor Communication

Typical communication steps between the processor and the PI3EQX10312 during plug detection are:

- 1. INTB asserted LOW, which indicates changes in register 02H (interrupt register) or register 03H & 04H (status registers).
- 2. Processor reads interrupt registers to determine which event occurred. Interrupt register (02H) latches attach, detach, or fault event occurred. All interrupt flags in interrupt register (02H) clears after the I2C read action.

3. Processor reads CC status registers (03H & 04H) to determine real-time plugin details, charging profile, and fault condition. Processor can configure the power and USB channels according to information in status registers.

- 4. After reading register 02H, 03H & 04H, INTB becomes hi-z again.
- 5. Processor shall configure PI3EQX10312 ReDriver via I2C, if applicable.

Interrupts

The baseband processor recognizes interrupt signals by observing the INTB signal, which is active LOW. Interrupts are masked upon bit 0 of control register 01H (interrupt mask bit). After the interrupt mask bit is cleared by the baseband processor, the INTB pin is hi-z in preparation for a future interrupt. When an interruptible event occurs, INTB transitions LOW and returns hi-z when the processor reads the interrupt register (02H) and status registers (03H & 04H). Subsequent to the initial power up or reset, if the processor writes a "1" to interrupt mask bit when the system is already powered up, the INTB pin stays hi-z and ignores all interrupts until the interrupt mask bit is cleared.

Aside from monitoring the I2C registers, the system can also monitor ID pin and VBUS for connector status. If the port is configured as a device (or dual-role acting as device), VBUS goes to 5V when host attachment is detected; if the port is configured as a host (or dual-role acting as host), ID pin pulls low when device attachment is detected, and system should assert VBUS.

Port Setting (Host/Device/Dual-Role)

When power is applied to VDD, an internal power-on reset (POR) holds the PI3EQX10312 in a reset condition until VDD reaches 2.65V. At that point, the reset condition is released, the PI3EQX10312 registers, and I²C-bus state machine will initialize to their default states. Upon power up, Bit [4:1] and Bit [6:5] of register 01H are initialized according to the connections of the pins PORT0, PORT1, and SRC_CUR as follows:

PORT1	PORT0	Port Setting	Bit [4:1] of Register 01H
Float	VDD	SRC with Accessory Support	0010
GND	VDD	SRC without Accessory Support	1010
VDD	Float	DRP with Accessory Support	0100
VDD	GND	DRP without Accessory Support	0011
Float	Float	DRP with Try.SRC and Accessory Support	0110
Float	GND	SINK with Accessory Support	0001
GND	Float	DRP with Try.SNK and Accessory Support	0101
GND	GND	SINK without Accessory Support	0000

Port Setting and Register Initial Values

PI3EQX10312 can be configured through I2C as host, device, or dual-role port per the register table. After power up, the port setting can then be changed by I2C writes to bits [4:1] of control register (01H). Thereafter, VDD must be lowered below 1.0V to reset the device (both registers and I2C-bus state machine).

PI3EQX10312 connects current sources to CC1 and CC2 when operating in host mode. It also sets the current level according to the charging current setting.

SRC_CUR Setting and Register Initial Values

SRC_CUR	SOURCE Current Mode Setting	Bit [6:5] of Register 01H
VDD	3A	10
No Connection	1.5A	01
GND	Default	00

This initialization only happens once when PI3EQX10312 is powered up. Register 01H can be changed by I2C commands afterwards.

In device mode, PI3EQX10312 connects two integrated resistor Rd1 and Rd2 to CC1 and CC2 respectively. Dual-role mode enables CC1 and CC2 toggle between host mode and device mode alternatively every 50ms. The toggling stops after connection is made and role negotiated.

Current Mode Setting and Detection

PI3EQX10312 can be configured as different current modes per CC1/CC2 setting. Host mode (or dual role acting as host) allows the system to configure between high-current mode (3A), medium-current mode (1.5A) and default-current mode. Different current modes can be set by writing control register (01H). The initial setting depends on SRC_CUR during POR. When in device mode (or dual role acting as device), CC1/CC2 pins allow the system to detect the host charging capability. The charging capability is reported in CC status registers (03H & 04H), which can help the system to configure the charging current accordingly.

ID

When PI3EQX10312 is configured as host mode (or dual role acting as host), ID pin is pulled low when a device is attached to the USB-C connector. The ID pin works as an interrupt signal to acknowledge system when there is device attachment. It should be noted the ID pin is not to be driven low when an audio accessory is detected, and ID pin always stays hi-z when port is in device mode.

Audio Adapter Accessory and Debug Accessory Mode

PI3EQX10312 can detect analog audio adapter or debug accessory attachment as per CC1/CC2 setting. This is reported in CC status registers (03H & 04H) to help system to configure audio adapter accessory and debug accessory mode accordingly.

Debug Accessory Detection (DEBUG)

PI3EQX10312 can detect debug accessory attachment as per CC1/CC2 setting. This is reported by the DEBUG pin in both I2C and pin control modes. DEBUG is pulled low when debug accessory attachment is detected. Otherwise, DEBUG stays hi-z.

Debug Accessory Detection

Debug Accessory	DEBUG
Detected	Low
Not Detected	Hi-Z

VBUS Detection

PI3EQX10312 detects VBUS to determine the attached state when port is a device.

USB-C Detector Register Table

Command	Register	Туре	Reset Value	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
00H	Device ID	Read	00000100		Version ID 00000					Vendor ID(Perico	om): 100
				Power Saving		urrent Mode CE/DRPs)		Port Set	ting		Interrupt Mask
01H	Control	Read/Write	0XXXXXX0	0: No Power Saving 1: Power Saving	00: Default 01: Medium 10: High (Initialization SRC_CUR pi Power up)		0001: SINK 1010: SRC v 0010 :SRC v 0011: DRP v 0100: DRP v 0110: DRP v	without Accessory with Accessory with Accessory without Accessory with Accessory with Try.SRC and with Try.SNK a	Support ry Support Support ory Supp Support nd Acces	t ort ort ssory Support	0: Does not Mask Interrupts 1: Mask Interrupts
				Fault Recovery	OCP Event	OVP Event		OTP Event	_	Detach	Attach
02H	Interrupt Read/Clear	00000000	0: Fault Event not Recovered	0: No OCP Event	0: No OVP Event	Reserved	0: No OTP Event	_	0: No Interrupt		
				1: Fault Event Recovered	1: OCP Event	1: OVP Event		1: OTP Event	_	1: detachable	1: attached
				VBUS Detection (Port is a Device or in Accessory Mode)		rent Detection a Device)	Attac	hed Port Status		Plug Po	blarity
03H	Status 1	Read	0000000	0: Vbus not 00: Standby Detected 01: Default 1: Vbus 10: Medium Detected 11: High			attached.SRC) CE (attached.SN) GACC.SNK	IK)	00: Standby 01: CC2 connet attached.SNK,S DebugAcc.SNI DebugAcc.SNI 0: CC1 connet attached.SNK, DebugAcc.SNI DebugAcc.SNI DebugAcc.SNI 11: undetermin	SRC, X or Oriented C) Cted (for X or Oriented C)	
04H	Status 2	Read	00000000	Fault Occurring*				Reserved			
				Occurring 1: Fault(s) is Occurring							

USB-C Detector Pin Control Functional Description

Type-C Connector Port Setting (PORT1, PORT0)

For pin control without I2C, PI3EQX10312 can be configured as different ports by changing PORT1 and PORT0 pins' voltage levels.

Port Setting

I of t bettim	8	
PORT1	PORT0	Port Setting
Float	VDD	SRC with Accessory Support
GND	VDD	SRC without Accessory Support
VDD	Float	DRP with Accessory Support
VDD	GND	DRP without Accessory Support
Float	Float	DRP with Try.SRC and Accessory Support
Float	GND	SINK with Accessory Support
GND	Float	DRP with Try.SNK and Accessory Support
GND	GND	SINK without Accessory Support

SRC_CUR

When PI3EQX10312 is configured as a host, it can be set to different current mode according to the connection of SRC_CUR pin.

SRC_CUR Setting

SRC_CUR	SOURCE Current Mode Setting
VDD	3A
No Connection	1.5A
GND	Default

Type-C Connector Current Mode Detection (OUT1, OUT2)

Type-C connector can detect different host current modes and other accessories per CC1/CC2 setting. When PI3EQX10312 operates in device mode (or dual-role mode acting as device), it detects CC1/CC2 status to determine host charging current modes and reports to the system using OUT1 and OUT2 pins. OUT1 and OUT2 always stays hi-z unless medium- or high-current mode is detected.

Current Mode Detection

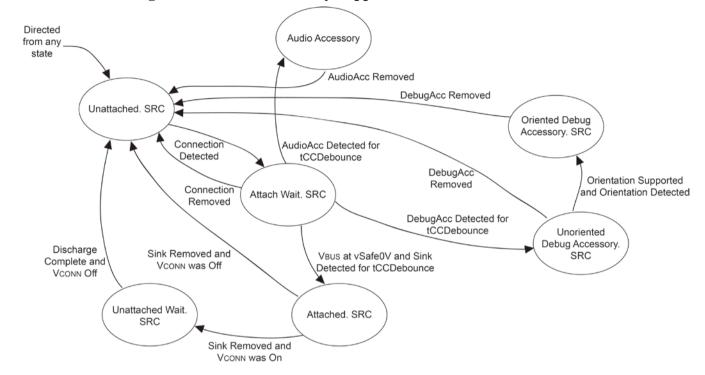
	OUT2	OUT1
Default Current Mode	Hi-Z	Hi-Z
Medium Current Mode (1.5A)	Hi-Z	Low
High Current Mode (3A)	Low	Low

Audio Adapter Accessory Detection (OUT3)

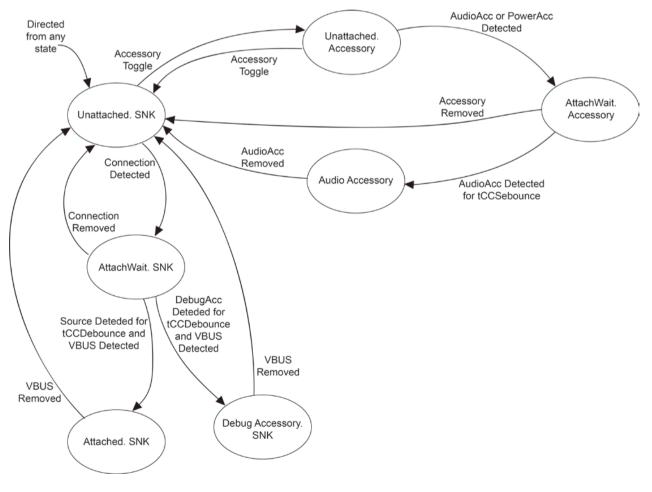
PI3EQX10312 detects analog audio adapter attachment as per CC1/CC2 setting. This is reported by the OUT3 pin. OUT3 is pulled low when an analog audio adapter attachment is detected. Otherwise, OUT3 stays hi-z.

Audio Adapter Accessory Detection

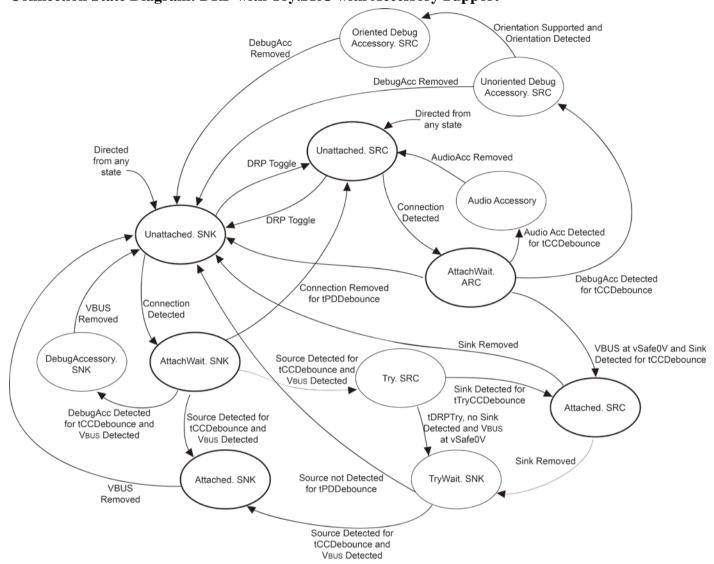
Audio Accessory	OUT3
Detected	Low
Not Detected	Hi-Z


ADDR1, ID, ENB Pins

Functionality of the ADDR1, ID, and ENB pins are the same for pin control or I2C control modes. Refer to previous section for detail description.



Connection State Diagram: SRC with Accessory Support



Connection State Diagram: SNK with Accessory Support

Connection State Diagram: DRP with Try.SRC with Accessory Support

ReDriver Detailed Description

ReDriver Register Table

(Accessible only when "Attached with plug polarity determined" by USB-C Detector. Register values will be reset when "Unattached") Register Assignment

0	er Assignn					
BYTE	0 (Revisio	n and Vendor ID Registe				
Bit	Туре	Power-up Condition	Control Affected	Comment		
7	RO	0				
6	RO	0		D // 0000		
5	RO	0	Revision ID	Rev# = 0000		
4	RO	0	-			
3	RO	0				
2	RO	0	-			
1	RO	1	Vendor ID	Pericom ID $= 0011$		
0	RO	1	-			
-		Type/ Device ID Registe	r)			
			Control Affected	Commont		
Bit	Туре	Power-up Condition	Control Allected	Comment		
7	RO	0	-	Device Type		
6	RO	0	Device Type	0000 = Passive MUX		
5	RO	0		0001 = Active MUX		
4	RO	1				
3	RO	0	1			
2	RO	0	Device ID	Device $ID = 0001$		
1	RO	0				
0	RO	1				
BYTE	2 (Byte co	unt Register 32 Bytes)	•			
Bit	Туре	Power-up Condition	Control Affected	Comment		
7	RO	0				
6	RO	0	-			
5	RO	1				
4	RO	0				
3	RO	0	Register Byte count	I2C byte count = 32 bytes		
2	RO	0	-			
1	RO	0	•			
0	RO	0	-			
			van Datastian Enchla Control)			
			rer Detection Enable Control)	Gamma		
Bit	Туре	Power-up Condition	Control Affected	Comment		
7	R/W	0		Reserved		
6	R/W	1	CONF<2>			
5	R/W	0	CONF<1>	Channel Assignment		
4	R/W	1	CONF<0>			
3	R/W	0		Reserved		
		0 if RXDET_EN pin=1;	RXDET_EN#	Far-end receiver detection enable/disable		
2	R/W	1 if RXDET_EN pin=1;		0 = Enable		
				1 = Disable		
1	R/W	1		Reserved		
0	R/W	0		Reserved		
BYTE	4 (Power I	Down Control)				
Bit	Туре	Power-up Condition	Control Affected	Comment		
7	R/W	0	PD_CON_Rx1			
6	R/W	0	PD_CON_Tx1	CONx power override		
~	R/W	0	PD_CON_Tx2	0 – Normal operation		
5		v v		1 – Force the CONx to power down state		
5 4		0	PD CON RX7			
4	R/W	0	PD_CON_Rx2	Reserved		
4 3	R/W R/W	0	PD_CON_Rx2	Reserved		
4 3 2	R/W R/W R/W	0 0	PD_CON_Rx2 — —	Reserved		
4 3	R/W R/W	0	PD_CON_Rx2 — — —			

BYTE	5 (Equaliz	ation, Flat Gain and -1dE	Linear Swing Setting of CON_Rx2)	
Bit	Туре	Power-up Condition	Control Affected	Comment
7	R/W	0	CON_Rx2_EQ<3>	
6	R/W	0	CON_Rx2_EQ<2>	
5	R/W	0	CON_Rx2_EQ<1>	CON_Rx2 setting configuration
4	R/W	0	CON_Rx2_EQ<0>	
3	R/W	0	CON_Rx2_FG<1>	Equalizer
2	R/W	1	CON_Rx2_FG<0>	Flat Gain
1	R/W	0	CON_Rx2_SW<1>	Swing
		0		
0	R/W	I I III	$CON_Rx2_SW<0>$	
			Linear Swing Setting of CON_Tx2)	
Bit	Туре	Power-up Condition	Control Affected	Comment
7	R/W	0	CON_Tx2_EQ<3>	
6	R/W	0	CON_Tx2_EQ<2>	CON_Tx2 setting configuration
5	R/W	0	CON_Tx2_EQ<1>	CON_1X2 setting configuration
4	R/W	0	CON_Tx2_EQ<0>	Equalizer
3	R/W	0	CON_Tx2_FG<1>	Flat Gain
2	R/W	1	CON_Tx2_FG<0>	
1	R/W	0	CON_Tx2_SW<1>	Swing
0	R/W	1	CON_Tx2_SW<0>	
*		ation, Flat Gain and -1dF	Linear Swing Setting of CON_Tx1)	
Bit	Type	Power-up Condition	Control Affected	Comment
7	R/W	0	CON_Tx1_EQ<3>	
6	R/W	0	CON_Tx1_EQ<2>	
5	R/W	0	CON_Tx1_EQ<1>	CON_Tx1 setting configuration
4	R/W	0	CON_Tx1_EQ<0>	
				Equalizer
3	R/W	0	CON_Tx1_FG<1>	Flat Gain
2	R/W	1	CON_Tx1_FG<0>	Swing
1	R/W	0	CON_Tx1_SW<1>	
0	R/W	<u> </u>	CON_Tx1_SW<0>	
	-		Linear Swing Setting of CON_Rx1)	
Bit	Туре	Power-up Condition	Control Affected	Comment
7	R/W	0	CON_Rx1_EQ<3>	
6	R/W	0	CON_Rx1_EQ<2>	CON_Rx1 setting configuration
5	R/W	0	CON_Rx1_EQ<1>	CON_KAT setting configuration
4	R/W	0	CON_Rx1_EQ<0>	Fauelizer
3	R/W	0	CON_Rx1_FG<1>	Equalizer
2	R/W	1	CON_Rx1_FG<0>	Flat Gain Swing
1	R/W	0	CON_Rx1_SW<1>	Swing
			CON Rx1 SW<0>	
0	R/W	1		
-		1 erved)		
BYTE	9-11 (Rese			
BYTE BYTE	9-11 (Rese 12 (Thresh	old, Feature Enable/ Dis	able and Timing Setting)	Comment
BYTE BYTE Bit	9-11 (Rese 12 (Thresh Type	old, Feature Enable/ Dis Power-up Condition	able and Timing Setting) Control Affected	Comment High-Speed channel signal detector threshold
BYTE BYTE	9-11 (Reso 12 (Thresh Type R/W	old, Feature Enable/ Dis	able and Timing Setting) Control Affected IDET_VTH<1>	High-Speed channel signal detector threshold
BYTE BYTE Bit	9-11 (Rese 12 (Thresh Type	old, Feature Enable/ Dis Power-up Condition	able and Timing Setting) Control Affected	High-Speed channel signal detector threshold setting:
BYTE BYTE Bit 7	9-11 (Reso 12 (Thresh Type R/W	old, Feature Enable/ Dis. Power-up Condition 0	able and Timing Setting) Control Affected IDET_VTH<1>	High-Speed channel signal detector threshold setting: 00 50mVppd
BYTE BYTE Bit	9-11 (Reso 12 (Thresh Type R/W	old, Feature Enable/ Dis Power-up Condition	able and Timing Setting) Control Affected IDET_VTH<1>	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default)
BYTE BYTE Bit 7	9-11 (Reso 12 (Thresh Type R/W	old, Feature Enable/ Dis. Power-up Condition 0	able and Timing Setting) Control Affected IDET_VTH<1>	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default) 10 80mVppd
BYTE BYTE Bit 7 6	9-11 (Rese 12 (Thresh Type R/W R/W	old, Feature Enable/ Dis Power-up Condition 0 1	able and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0>	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default)
BYTE BYTE Bit 7 6 5	9-11 (Rese 12 (Thresh Type R/W R/W R/W	old, Feature Enable/ Disc Power-up Condition 0 1 1	able and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default) 10 80mVppd
BYTE BYTE Bit 7 6 5 4	9-11 (Rese 12 (Thresh Type R/W R/W R/W	old, Feature Enable/ Dis Power-up Condition 0 1 1 1 1 1	able and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved Reserved	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default) 10 80mVppd
BYTE BYTE Bit 7 6 5 4 3	9-11 (Rese 12 (Thresh Type R/W R/W R/W R/W R/W	old, Feature Enable/ Dis Power-up Condition 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved Reserved Reserved Reserved	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default) 10 80mVppd
BYTE BYTE Bit 7 6 5 4	9-11 (Rese 12 (Thresh Type R/W R/W R/W R/W R/W R/W R/W	old, Feature Enable/ Dis Power-up Condition 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved Reserved Reserved Reserved Reserved Reserved Reserved	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default) 10 80mVppd
BYTE BYTE Bit 7 6 5 4 3	9-11 (Rese 12 (Thresh Type R/W R/W R/W R/W R/W	old, Feature Enable/ Dis Power-up Condition 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved Reserved Reserved Reserved	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default) 10 80mVppd
BYTE BYTE Bit 7 6 5 4 3 2	9-11 (Rese 12 (Thresh Type R/W R/W R/W R/W R/W R/W R/W	old, Feature Enable/ Dis Power-up Condition 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved Reserved Reserved Reserved Reserved Reserved Reserved	High-Speed channel signal detector threshold setting: 00 50mVppd 01 65mVppd (Default) 10 80mVppd

Equalization Setting (dB):

Equali	Zunon S	, ching									
EQ1pin	EQ0pin	EQ3	EQ2	EQ1	EQ0	@ 2.5GHz	@ 3GHz	@ 4GHz	@ 5GHz	@ 6GHz	Note
0	F	0	0	0	0	3.57	4.22	5.44	6.42	7.27	Default
0	1	0	0	0	1	3.83	4.56	5.93	7.04	8.00	
0	0	0	0	1	0	4.13	4.93	6.47	7.71	8.76	_
0	R	0	0	1	1	4.41	5.29	6.95	8.29	9.42	_
R	1	0	1	0	0	4.98	5.89	7.61	8.99	10.14	
R	F	0	1	0	1	5.25	6.23	8.05	9.50	10.70	_
R	R	0	1	1	0	5.55	6.59	8.51	10.04	11.28	
R	0	0	1	1	1	5.82	6.92	8.93	10.51	11.78	
F	0	1	0	0	0	6.39	7.44	9.39	10.93	12.16	
F	R	1	0	0	1	6.63	7.74	9.76	11.34	12.60	_
F	F	1	0	1	0	6.90	8.05	10.14	11.77	13.05	_
F	1	1	0	1	1	7.14	8.34	10.49	12.15	13.44	_
1	R	1	1	0	0	7.51	8.71	10.87	12.53	13.81	_
1	0	1	1	0	1	7.74	8.97	11.18	12.87	14.15	
1	1	1	1	1	0	7.98	9.25	11.51	13.23	14.51	
1	F	1	1	1	1	8.20	9.51	11.81	13.54	14.82	_

Flat Gain Setting:

FGpin is the selection pin for the DC gain

FGpin	FG<1:0>	Flat Gain Setting (dB)
R	00	-2.07
F	01	-0.24 (Default)
0	10	0.5
1	11	1.77

Swing -1dB Compression Point Output Swing Setting:

SWpin is the selection pin for SW

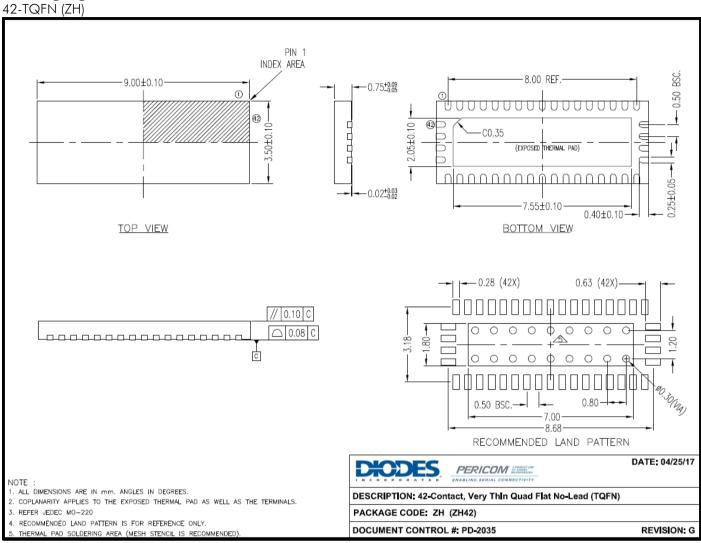
SWpin	SW<1:0>	Flat Gain Setting
0	00	900m Vppd
1	01	1000m Vppd (Default)
NA	10	1100m Vppd
NA	11	1200m Vppd

ReDriver Connection in Pin Mode

USB-C Status	ReDriver Status
Unattached	Inactive
Attached and CC1 connected	TX_CON1/RX_CON1 Active
Attached and CC2 connected	TX_CON2/RX_CON2 Active

ReDriver Connection in I2C Mode

USB-C Status	BYTE3 CONF<2:0>	ReDriver Status
Unattached	Х	Inactive
Attached	100	TX_CON1/RX_CON1 Active
Attached	101 (Default)	TX_CON2/RX_CON2 Active


Part Marking

Top mark not available at this time. To obtain advanced information regarding the top mark, contact your local sales representative.

Packaging Mechanical

17-0266

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Number	Package Code	Package Description
PI3EQX10312ZHEX	ZH	42-Contact, Very Thin Quad Flat No-Lead (TQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated www.diodes.com