Description

The DPO2036 provides 4 channels of over-voltage protection over the CC1/2 \& SBU1/2 pins which are connected to the USB Type-C ${ }^{(®}$ connector. The 4 channels are divided into two pairs, one pair of channels protect the CC1 and CC2 pins from being shorted to the Vbus, one pair of channels protect the SBU1 and SBU2 pins from being shorted to the VBus. Whenever the voltage threshold set for any of the two pairs of channels is reached, the exception condition becomes valid and the low-active flag FAULTB is subsequently asserted.

This device is designed to draw its operating voltage primarily from the system power, Vvsys, which is either the always-ON $3.3 \mathrm{~V} / 5 \mathrm{~V}$ existed within the system or the 1 -cell battery inside the mobile system. Under the circumstance when the battery inside a mobile system is fully depleted, DPO2036 can obtain power from the external peripheral system connected to the USB Type-C connector. The DPO2036 supports the dead battery mode by having both of the CC1C and CC2C pins tied to the pull-down resistor RD_{D} (resistor value per the USB Type-C Specification) embedded in the device.

The DPO2036 is housed in the low-profile and space-saving U -QFN2020-12 (Type B) package which is manufactured with environmental-friendly material.

Features

- Operating Voltage Range: 2.7V to 5.5 V
- 4-Channel Over-Voltage Protection with Auto-Recovery
- RDs(on) of OVP MOSFET for CC-Pin Protection: $350 \mathrm{~m} \Omega$ Typical
- Rds(on) of OVP MOSFET for SBU-Pin Protection: 5Ω Typical
- Cin of OVP MOSFET for CC-Pin Protection: 50pF
- CIN of OVP MOSFET for SBU-Pin Protection: 5pF
- Dead Battery Support for CC Lines
- Built-In Over-Temperature Protection
- IEC61000-4-2 ESD Protection on CC1C, CC2C, SBU1C, SBU2C
- Totally Lead-Free \& Fully RoHS Compliant (Notes 1 \& 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/quality/product-definitions/

Pin Assignments

Applications

- Notebook/Desktop/AIO PCs, Tablets, Mobile Phones
- VR/AR Headsets
- Docking Stations, Universal \& Multimedia Hubs
- FPTVs, PC Monitors
- Set-Top-Boxes, Residential Gateways, Storage Devices
- Universal AC/DC Chargers/Adapters

Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen-and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.

DPO2036

Typical Application Circuit

Figure 1. Typical Application Circuit

Pin Descriptions

Pin Number	Pin Name	Function
1	SBU1C	SBU1 connector side. This shall be connected to the SBU1 pin of the USB Type-C connector.
2	SBU2C	SBU2 connector side. This shall be connected to the SBU2 pin of the USB Type-C connector.
3	CC1C	CC1 connector side. This shall be connected to the CC1 pin of the USB Type-C connector.
4	CC2C	CC2 connector side. This shall be connected to the CC2 pin of the USB Type-C connector.
5	CB	Pin for ESD support capacitor. Place a 0.1μ F capacitor on this pin to ground
6	FAULTB	Fault status. This is an active-low open-drain output.
7	CC2S	CC2 system side. This shall be connected to the CC2 pin of the component to be protected.
8	CC1S	CC1 system side. This shall be connected to the CC1 pin of the component to be protected.
9	SBU2S	SBU2 system side. This shall be connected to the SBU2 pin of the component to be protected.
10	SBU1S	SBU1 system side. This shall be connected to the SBU1 pin of the component to be protected.
11	GND	Ground.
12	VSYS	Power Input. This shall be connected to the 2.7 to 5.5 V power source inside the system.
-	Thermal Pad	Need to connect pad to the PCB ground plane. It serves as a heatsink.

Functional Block Diagram

Figure 2. Internal Functional Blocks

DPO2036

Absolute Maximum Ratings (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 4)

Symbol	Parameter	Rating	Unit
Vvsys	Voltage Range of VSYS Pin	-0.3 to 6.0	V
$\mathrm{V}_{\text {faultb }}$	Voltage Range of FAULTB Pin	-0.3 to 6.0	V
Vsbuxs, Vccxs	Voltage Range of SBU1S, SBU2S, CC1S, CC2S Pins	-0.3 to 6.0	V
$\mathrm{V}_{\text {SBUxC, }} \mathrm{V}_{\text {ccx }}$	Voltage Range of SBU1C, SBU2C, CC1C, CC2C Pins	-0.3 to 24.0	V
TJ	Operating Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature	+260	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (HBM), JESD22-A114	± 2.0	kV
	Charge Device Model (CDM), JESD22-C101	± 0.5	

Note: 4. These are stress ratings only. Operation outside the absolute maximum ratings can cause device failure. Operation at the absolute maximum rating for extended periods can reduce device reliability.

Package Thermal Data (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 5)

Symbol	Parameter	Rating	Unit
PD	Power Dissipation	1.3	W
RөJA	Thermal Resistance, Junction-to-Ambient	96	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rөjc	Thermal Resistance, Junction-to-Case	26	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: \quad. Device mounted on FR-4 substrate PC board, 2 oz copper, with $1^{\prime \prime} \times 1^{\prime \prime}$ copper pad layout.

Recommended Operating Conditions (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Min	Max	Unit
Vvsys	Input Supply Voltage at VSYS Pin	2.7	5.5	V
Vfaultb	Power Rail for Pull-up on FAULTB Pin	2.7	5.5	V
Vccxc, Vccxs	I/O Voltage at CC1C, CC2C, CC1S, CC2S Pins	-0.25	5.5	V
$\mathrm{V}_{\text {SBUxC }}$, V $\mathrm{V}_{\text {Sbux }}$	I/O Voltage at SBU1C, SBU2C, SBU1S, SBU2S Pins	-0.25	4.2	V
Ivconn	Output Current Flowing Into CCxS and out of CCxC, with $\mathrm{V}_{C C x S}-\mathrm{V}_{\mathrm{CCxC}} \leq$ 250 mV	-	600	mA

Electrical Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vvsvs}=4.2 \mathrm{~V}$, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
CC OVP Switches						
Rds(ON)_cc	On Resistance of CC OVP FETs	$\mathrm{VccxC}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	-	350	500	$\mathrm{m} \Omega$
		$\mathrm{Vccxc}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$	-	350	520	$\mathrm{m} \Omega$
Rds(onflat)_Cc	On Resistance Flatness of CC OVP FETs	$\mathrm{V}_{\text {c }} \mathrm{xC}=0.1 \mathrm{~V}$ to 1.2V	-	-	5	$\mathrm{m} \Omega$
Con_cc	Equivalent ON Capacitance	Capacitance from CCxC or CCxS to GND when device is powered, ($\mathrm{V}_{\mathrm{ccxc}}$ $\left./ V_{C c x s}\right)=0 \mathrm{~V} \text { to } 1.2 \mathrm{~V}$	-	50	-	pF
RPD_CCxC	Dead Battery Pull-Down Resistance on CCxC Pin	$\mathrm{VcCxC}=2.6 \mathrm{~V}$	4.10	5.1	6.10	k Ω
Vth_RPD_CCxC	Threshold Voltage of the Pulldown FET for in Series with RPD CCxC	$I C C x C=100 \mu \mathrm{~A}$	1.2	1.4	1.6	V
VTh_ovp_CCxC	OVP Threshold on CCxC Signal	-	5.6	6	6.25	V
VTH_OVP_HYS_CCxC	OVP Hysteresis on CCxC Signal	-	-	140	-	mV
BWON_CC (Note 6)	CC Line ON Bandwidth Single Ended (-3dB)	Measured from CCxC to CCxS, 50Ω system, $\mathrm{V}_{\mathrm{CM}}=0.1 \mathrm{~V}$ to 1.2 V	-	200	-	MHz
Vsht_cCxC_max (Note 6)	Short-to-VBUS Tolerance on the CCxC Pins	Hot-plug CCxC with a 1 meter USB Type-C cable, place a 30Ω load on CCxS	-	-	22	V
Vsht_CCxs_CL (Note 6)	Short-to-VBUS Clamping Voltage on the CCxS Pins	Hot-plug CCxC with a 1 meter USB Type-C cable, place a 30Ω load on $C C x S$. Hot plug voltage $\mathrm{V}_{\mathrm{CCxC}}=24 \mathrm{~V}$	-	7	-	V
SBU OVP Switches						
Rds(on)_sbu	On Resistance of SBU OVP FETs	VsBuxC $=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	-	5	-	Ω
		$V_{\text {SBUxC }}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$	-	5	-	Ω
RDS(ONFLAT)_sbu	On Resistance Flatness of SBU OVP FETs	$\mathrm{V}_{\text {SBuxC }}=0.1 \mathrm{~V}$ to 3.6 V	-	-	1	Ω
Con_sbu	Equivalent ON Capacitance	Capacitance from SBUxC or SBUxS to GND when device is powered. VSBUxC $/ \mathrm{V}$ SBUxS $=0 \mathrm{~V}$ to 3.6 V	-	5	-	pF
VTH_OVP_SBUxC	OVP Threshold on SBUxC Signals	-	4.15	4.5	4.75	V
VTH_OVP_HYS_SBUxC	OVP Hysteresis on SBUxC Signals	-	-	110	-	mV
BWon sbu (Note 6)	$\underset{\substack{\text { SBU Line ON Bandwidth Single Ended } \\(-3 d B)}}{ }$	Measured from SBUxC to SBUxS, 50Ω system, $\mathrm{VCM}=0.1 \mathrm{~V}$ to 3.6 V	-	600	-	MHz
Vshtbus sbuxc_max (Note 6)	Short-to-VBUS Tolerance on the SBUxC Pins	Hot-plug SBUxC with a 1 meter USB Type-C cable, place a 40Ω in series with 150 nF to GND on SBUxS pin	-	-	22	V
Vshtbus sbuxs cl (Note 6)	Short-to-VBUS Clamping Voltage on the SBUxS Pins	Hot-plug SBUxC with a 1 meter USB Type-C cable, place a 40Ω in series with 100 nF to GND on SBUxS pin. Hot plug voltage $\mathrm{V}_{\text {SBUxC }}=24 \mathrm{~V}$, $\mathrm{V}_{\text {vsys }}=$ 3.3 V	-	7	-	V
Xtalk sbux (Note 6)	Crosstalk between SBUx Lines	Measure crosstalk at $\mathrm{f}=1 \mathrm{MHz}$, from SBU1S to SBU2C or SBU2S to SBU1C. $\mathrm{V}_{\mathrm{CM} 1}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM} 2}=0.3 \mathrm{~V}$, terminate open sides to 50Ω	-	-80	-	dB

Note: 6. Guaranteed by bench characterization.

Electrical Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $\mathrm{VVSVS}=4.2 \mathrm{~V}$, unless otherwise specified.) (continued)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Power Supply and Leakage Current						
Vuvto	Vvsys Under Voltage Lockout	Vvsys steps up from 2V until CC or SBU FETs turn ON	2.15	2.4	2.55	V
VuvLo_hsys	Vvsys UVLO Hysteresis	Vvsys steps down from 2.5 V until CC or SBU FETs turn off. Measure difference between rising and falling UVLO to calculate	-	200	-	mV
IvsYs_ON	Vvsrs Supply Current	-	-	190	-	$\mu \mathrm{A}$
ILEAK_CCxC	Leakage current for CCxC when device is Powered	$\mathrm{VcCxC}=3.6 \mathrm{~V}$	-	-	30	$\mu \mathrm{A}$
LLEAK_SBUxC	Leakage current for SBUxC when device is Powered	$V_{\text {SBUxC }}=3.6 \mathrm{~V}$	-	-	35	$\mu \mathrm{A}$
ILEAK_CCxs	Leakage Current for CCxS when device is Powered	$\mathrm{VcCxS}=3.6 \mathrm{~V}$	-	-	30	$\mu \mathrm{A}$
ILEAK_SBUxS	Leakage current for SBUxS when device is Powered	Vsbuxs $=3.6 \mathrm{~V}$	-	-	35	$\mu \mathrm{A}$
ILEAK_OVP_CCxC	Leakage current into CCxC pins when device is in OVP	Vvsys $=0 \mathrm{~V}, \mathrm{~V}_{\text {ccxc }}=21 \mathrm{~V}, \mathrm{~V}_{\text {ccxs }}=$ OV	-	-	6	mA
		$\mathrm{V}_{\mathrm{VSYS}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{Ccx}}=21 \mathrm{~V}, \mathrm{~V}_{\mathrm{CCxS}}=$ OV	-	-	150	$\mu \mathrm{A}$
ILEAK_OVP_SBUxC	Leakage current into SBUxC pins when device is in OVP	$\begin{aligned} & \text { VVSYS }=0 \mathrm{~V}, \mathrm{VSBUxC}=21 \mathrm{~V}, \mathrm{~V} \text { SBUxS }= \\ & 0 \mathrm{~V} \end{aligned}$	-	-	200	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{VSYS}}=4.2 \mathrm{~V}, \mathrm{~V}_{\text {SBUxC }}=21 \mathrm{~V}, \mathrm{~V}_{\text {SBUXS }} \\ & =0 \mathrm{~V} \end{aligned}$	-	-	200	$\mu \mathrm{A}$
ILEAK_OvP_CCxs	Leakage current out of CCxS pins when device is in OVP	$\begin{aligned} & \text { VvsYs }=0 \mathrm{~V}, \mathrm{VcCxC}=21 \mathrm{~V}, \mathrm{Vccxs}= \\ & 0 \mathrm{~V} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{Vsys}}=4.2 \mathrm{~V}, \mathrm{Vccxc}=21 \mathrm{~V}, \mathrm{~V} \mathrm{CCxS}= \\ & 0 \mathrm{~V} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
ILEAK_OVP_SBUxS	Leakage current out of SBUxS pins when device is in OVP	$\begin{aligned} & \mathrm{V}_{\mathrm{VSYS}}=0 \mathrm{~V}, \mathrm{~V}_{S B U X C}=21 \mathrm{~V}, \mathrm{~V}_{\text {SBUXS }}= \\ & 0 \mathrm{~V} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
		$\begin{aligned} & \text { VVSYS }=4.2 \mathrm{~V}, \mathrm{~V}_{\text {SBUxC }}=21 \mathrm{~V}, \mathrm{~V}_{\text {SBUxS }} \\ & =0 \mathrm{~V} \end{aligned}$	-	-	1	$\mu \mathrm{A}$
FAULTB Pin						
$\mathrm{V}_{\text {faultb }}$	Active-Low Output Voltage of FAULTB Pin	$\mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.4	V
ILEAK_FAULB	FAULTB Leakage Current	$\mathrm{V}_{\text {FAULTB }}=4.2 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
tfaultb_ASSERTION	FAULTB Assertion Time	-	-	-	300	$\mu \mathrm{s}$
traultb_deassertion	FAULTB Deassertion Time	-	-	4	-	ms
Timing Requirements						
ton	Time from crossing rising Vvsys UVLO until CC/SBU OVP FETs are on	-	-	-	2.5	ms
tovP_RESPONSE_CC	OVP response time on the CC pins, time from OVP asserted until OVP FETs turnoff	-	-	100	-	ns
tovp_RESPONSE_SBU	OVP response time on the SBU pins, time from OVP asserted until OVP FETs turnoff	-	-	100	-	ns
tovP_RESPONSE_CC_1	OVP recovery time on the CC pins. Once an OVP has occurred, the minimum duration until CC FETs turn back on if OVP has been removed already	-	26	32	38	ms
tovp_RESPONSE_SBU_1	OVP recovery time on the SBU pins. Once an OVP has occurred, the minimum duration until SBU FETs turn back on if OVP has been removed already	-	26	32	38	ms
tovP_RESPONSE_CC_2	OVP recovery time on the CC pins. Time from OVP removal until CC FETs turn back on, if device has been in OVP $>40 \mathrm{~ms}$	-	-	1	-	ms
tovp_RESPONSE_SBU_2	OVP recovery time on the SBU pins. Time from OVP removal until SBU FETs turn back on, if device has been in OVP $>40 \mathrm{~ms}$	-	-	1	-	ms
Thermal Shutdown and Hysteresis						
TSHDN	Thermal Shut Down Theshold	-	-	+150	-	${ }^{\circ} \mathrm{C}$
THSYS	Thermal Shut Down Hysteresis	-	-	+20	-	${ }^{\circ} \mathrm{C}$

DPO2036

Performance Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Figure 3. SBU R RS(ON) Flatness

Figure 5. SBUxC Leakage Current vs. Temperature

Figure 7. SBUxC 5.5V OVP Leakage Current vs. Temperature

Figure 4. CC $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Flatness

Figure 6. CCxC Leakage Current vs. Temperature

Figure 8. SBUxC 22V OVP Leakage Current vs. Temperature

Performance Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (continued)

Figure 9. CCxC OVP Leakage Current vs. Temperature

Figure 11. SBUxS OVP Leakage Current vs. Temperature

Figure 13. VSYS Supply Current vs Temperature

Figure 10. SBUxS OVP Leakage Current vs. Temperature

Figure 12. CCxS OVP Leakage Current vs. Temperature

Figure 14. SBU1C Short to $5 \mathrm{~V} \mathrm{~V}_{\text {Bus }}$

DPO2036

Performance Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (continued)

Figure 15. SBU1C Short to 20 V VBus

Figure 17. SBU MOSFET Turn-On Time

Figure 19. SBU Channel Bandwidth

Figure 16. CC1C Short to 20V VBus

Figure 18. CC MOSFET Turn-On Time

Figure 20. CC Channel Bandwidth

DPO2036

Performance Characteristics (@ $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.) (continued)

Figure 21. SBU Crosstalk

Application Information

General Description

The DPO2036 is a USB port protection device designed to work with USB Type-C connector, cable and USB PD to form a system that enables signal management and power delivery in a compact package. It provides short to VBUS protection for the CC and SBU pins over the USB TypeC connector, and supports the dead battery mode of operation in an end system / product where the embedded battery is fully depleted.

Short to VBUS Protection

The DPO2036 is a 4-channel uni-directional power switch with over-voltage protection. This is used to prevent the components inside a system which adopts the USB Type-C connector from being damaged by unexpected hazard. On the USB Type-C connector, the CC and SBU pins are located in the close proximity of the VBUS pin. If ever the CC and/or the SBU lines are short to the VBUS line either at the USB-C connector or at the cable end, the components (mostly ICs manufactured on the various sub-micron process nodes) behind the USB Type-C connector can easily be damaged by the resulting EOS. The damage, if occurred, is likely non-recoverable especially given that the voltage level on the VBUS line can go up to 20 V or slightly higher. The DPO2036 integrates four series over-voltage FETs to protect the system side CC and SBU lines. When either line on the Type-C connector side CC1C, CC2C, SBU1C or SBU2C is shorted to VBUS line, the DPO2036 will turn off the over-voltage FETs in less than 100 ns window to isolate the system side CC and SBU lines from the over-voltage connector side. When shorted to VBUS line is detected, the open-drain FAULTB will output low to indicate a fault condition.

Dead Battery Charging and Power Delivery

In a battery-powered system, the pull-down resistors embedded inside DPO2036 are turned ON and connected to the CC1C/CC2C pins whenever the battery is depleted. Subsequently, the battery-powered system shall receive power through the USB Type-C connector from the external device connected. As soon as the embedded battery is sufficiently recharged to power the system and DPO2036, the pull-down resistors shall be disconnected from the CC1C/CC2C pins.

Signal Operation Range

Table 1 and Table 2 show the signal operation range and output status:

0 V to UVLO (Invalid)	OV to 5.85 V	OFF: Dead Battery RPD Inserted
	5.85 V to 20 V	OFF: Dead Battery RPD Inserted
2.7 V to 5.5 V (Valid)	0 V to 5.85 V	ON
	5.85 V to 20 V	OFF: FAULTB Asserted (OVP detected)

Table 1. Signal Operation Range for CCx

0 V to UVLO (Invalid)	0 V to 4.35 V	OFF
	4.35 V to 20 V	OFF
2.7 V to 5.5 V (Valid)	0 V to 4.35 V	ON
	4.35 V to 20 V	OFF: FAULTB Asserted (OVP detected)

Table 2. Signal Operation Range for SBUx

Ordering Information (Note 7)

Part Number	Marking ID	Reel Size (inches)	Tape Width (mm)	7" Tape and Reel	
				Quantity	Part Number Suffix
DPO2036DBB-7	PO36	7	$3,000 /$ Tape \& Reel	-7	

Note: 7. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

YY: Year
WW: Week 01~53

DPO2036

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

U-QFN2020-12 (Type B)

U-QFN2020-12 (Type B)			
Dim	Min	Max	Typ
A	0.55	0.65	0.60
A1	0.00	0.05	0.02
A3	--	--	0.13
b	0.20	0.30	0.25
D	1.95	2.05	2.00
D2	0.90	1.10	1.00
E	1.95	2.05	2.00
E2	0.90	1.10	1.00
e	0.45 BSC		
k	--	--	0.25
L	0.20	0.30	0.25
All Dimensions in $\mathbf{~ m m}$			

a) Actual shape depending upon manufacturing technology used.

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

U-QFN2020-12 (Type B)

Dimensions	Value (in mm)
\mathbf{C}	0.450
\mathbf{X}	0.450
$\mathbf{X 1}$	1.000
$\mathbf{X 2}$	0.750
$\mathbf{X 3}$	2.300
\mathbf{Y}	0.300
$\mathbf{Y 1}$	1.000
$\mathbf{Y 2}$	1.650
$\mathbf{Y 3}$	2.300

Mechanical Data

- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: NiPdAu Finish, Solderable per MIL-STD-202, Method 208④
- Weight: 0.007 grams (Approximate)

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION)

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated
www.diodes.com

