Product Summary

<table>
<thead>
<tr>
<th>$V_{BR(DSS)}$</th>
<th>$R_{DS(ON)}$</th>
<th>I_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>60V</td>
<td>1.8Ω @ $V_{GS} = 10V$</td>
<td>440mA</td>
</tr>
<tr>
<td></td>
<td>2.1Ω @ $V_{GS} = 4.5V$</td>
<td>410mA</td>
</tr>
</tbody>
</table>

Description

This new generation MOSFET is designed to minimize the on-state resistance ($R_{DS(ON)}$), and yet maintain superior switching performance, making it ideal for high-efficiency power management applications.

Applications

- Battery Operated Systems and Solid-State Relays
- Drivers: Relays, Solenoids, Lamps, Hammers, Displays, Memories, Transistors, etc.
- DC-DC Converters
- Power Management Functions

Features

- Low On-Resistance
- Low Input Capacitance
- Fast Switching Speed
- Low Input/Output Leakage
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. “Green” Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability

Mechanical Data

- Case: SOT563
- Case Material: Molded Plastic, “Green” Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish – Matte Tin Annealed over Copper Leadframe. Solderable per MIL-STD-202, Method 208
- Terminal Connections: See Diagram Below
- Weight: 0.006 grams (Approximate)

Ordering Information (Note 4)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Case</th>
<th>Packaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMG1026UV-7</td>
<td>SOT563</td>
<td>3,000 / Tape & Reel</td>
</tr>
</tbody>
</table>

Notes:
1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
3. Halogen- and Antimony-free “Green” products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Marking Information (Note 5)

Date Code Key

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>W</td>
<td>~</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
</tr>
<tr>
<td>Month</td>
<td>Jan</td>
<td>Feb</td>
<td>Mar</td>
<td>Apr</td>
<td>May</td>
<td>Jun</td>
<td>Jul</td>
<td>Aug</td>
<td>Sep</td>
<td>Oct</td>
</tr>
<tr>
<td>Code</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

Note:
5. Product manufactured with Date Code D9 (September, 2016) and newer are built with additional Pin 1 dot in marking information. Product manufactured prior to Date Code D9 are built without Pin 1 dot.
Maximum Ratings (@TA = +25°C, unless otherwise specified.)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>VDDS</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>VGS</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current (Note 6) VGS = 10V Steady State</td>
<td>T_A = +25°C</td>
<td>I_D</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>T_A = +85°C</td>
<td>410</td>
<td>300</td>
</tr>
<tr>
<td>Continuous Drain Current (Note 7) VGS = 10V t ≤ 10s</td>
<td>T_A = +25°C</td>
<td>I_D</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>T_A = +85°C</td>
<td>440</td>
<td>320</td>
</tr>
<tr>
<td>Continuous Drain Current (Note 6) VGS = 4.5V Steady State</td>
<td>T_A = +25°C</td>
<td>I_D</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>T_A = +85°C</td>
<td>380</td>
<td>270</td>
</tr>
<tr>
<td>Continuous Drain Current (Note 7) VGS = 4.5V t ≤ 10s</td>
<td>T_A = +25°C</td>
<td>I_D</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>T_A = +85°C</td>
<td>410</td>
<td>295</td>
</tr>
<tr>
<td>Pulsed Drain Current (Note 8)</td>
<td>I_DM</td>
<td>1.0</td>
<td>A</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Dissipation (Note 6)</td>
<td>PD</td>
<td>0.58</td>
<td>W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Ambient @T_A = +25°C (Note 6)</td>
<td>R_JA</td>
<td>213</td>
<td>°C/W</td>
</tr>
<tr>
<td>Power Dissipation (Note 7) t ≤ 10s</td>
<td>PD</td>
<td>0.65</td>
<td>W</td>
</tr>
<tr>
<td>Thermal Resistance, Junction to Ambient @T_A = +25°C (Note 7) t ≤ 10s</td>
<td>R_JA</td>
<td>192</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Electrical Characteristics (@TA = +25°C, unless otherwise specified.)

OFF CHARACTERISTICS (Note 9)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>BV_DSS</td>
<td>60</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>V GS = 0V, I D = 250µA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current T_J = +25°C</td>
<td>I_DSS</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
<td>µA</td>
<td>V GS = 50V, V GS = 0V</td>
</tr>
<tr>
<td>Gate-Source Leakage</td>
<td>I_GSS</td>
<td>—</td>
<td>—</td>
<td>±50</td>
<td>nA</td>
<td>V GS = ±5V, V DS = 0V</td>
</tr>
</tbody>
</table>

ON CHARACTERISTICS (Note 9)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate Threshold Voltage</td>
<td>V_GS(th)</td>
<td>0.5</td>
<td>—</td>
<td>1.8</td>
<td>V</td>
<td>V DS = V GS, I D = 250µA</td>
</tr>
<tr>
<td>Static Drain-Source On-Resistance</td>
<td>R_DS(ON)</td>
<td>—</td>
<td>1.2</td>
<td>1.8</td>
<td>Ω</td>
<td>V GS = 10V, I D = 500mA</td>
</tr>
<tr>
<td>Forward Transfer Admittance</td>
<td></td>
<td>—</td>
<td>1.4</td>
<td>2.1</td>
<td>mS</td>
<td>V GS = 4.5V, I D = 200mA</td>
</tr>
<tr>
<td>Continuous Source Current (9)</td>
<td>I_S</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>mA</td>
<td>V GS = 0V, I G = 200mA</td>
</tr>
<tr>
<td>Diode Forward Voltage</td>
<td>V_SD</td>
<td>—</td>
<td>0.8</td>
<td>1.3</td>
<td>V</td>
<td>V GS = 0V, I G = 200mA</td>
</tr>
</tbody>
</table>

DYNAMIC CHARACTERISTICS (Note 10)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance</td>
<td>C_GS</td>
<td>32</td>
<td>—</td>
<td>—</td>
<td>pF</td>
<td>V_D = 25V, V_GS = 0V, f = 1.0MHz</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>C_GS</td>
<td>4.4</td>
<td>—</td>
<td>—</td>
<td>pF</td>
<td>V_D = 25V, V_GS = 0V, f = 1.0MHz</td>
</tr>
<tr>
<td>Reverse Transfer Capacitance</td>
<td>C_GS</td>
<td>2.9</td>
<td>—</td>
<td>—</td>
<td>pF</td>
<td>V_D = 25V, V_GS = 0V, f = 1.0MHz</td>
</tr>
<tr>
<td>Gate Resistance</td>
<td>R_G</td>
<td>126</td>
<td>—</td>
<td>—</td>
<td>Ω</td>
<td>V GS = 0V, V GS = 0V, f = 1MHz</td>
</tr>
<tr>
<td>Total Gate Charge</td>
<td>Q_G</td>
<td>0.45</td>
<td>—</td>
<td>—</td>
<td>pC</td>
<td>V GS = 4.5V, I D = 250mA</td>
</tr>
<tr>
<td>Gate-Source Charge</td>
<td>Q_GS</td>
<td>—</td>
<td>0.08</td>
<td>—</td>
<td>ns</td>
<td>V GS = 0V, I D = 250mA</td>
</tr>
<tr>
<td>Gate-Drain Charge</td>
<td>Q_D</td>
<td>—</td>
<td>0.08</td>
<td>—</td>
<td>ns</td>
<td>V GS = 0V, I D = 250mA</td>
</tr>
<tr>
<td>Turn-On Delay Time</td>
<td>t_D(on)</td>
<td>—</td>
<td>3.4</td>
<td>—</td>
<td>ns</td>
<td>V GS = 0V, I D = 250mA</td>
</tr>
<tr>
<td>Turn-On Rise Time</td>
<td>t_R</td>
<td>—</td>
<td>3.4</td>
<td>—</td>
<td>ns</td>
<td>V GS = 0V, I D = 250mA</td>
</tr>
<tr>
<td>Turn-Off Delay Time</td>
<td>t_D(off)</td>
<td>—</td>
<td>26.4</td>
<td>—</td>
<td>ns</td>
<td>V GS = 0V, I D = 250mA</td>
</tr>
<tr>
<td>Turn-Off Fall Time</td>
<td>t_F</td>
<td>—</td>
<td>16.3</td>
<td>—</td>
<td>ns</td>
<td>V GS = 0V, I D = 250mA</td>
</tr>
</tbody>
</table>

Notes:
6. Device mounted on FR-4 PCB with minimum recommended pad layout, single sided.
7. Device mounted on FR-4 PCB with minimum recommended pad layout, measured in t ≤ 10s.
8. Short duration pulse test used to minimize self-heating effect.
9. Short duration pulse test used to minimize self-heating effect.
10. Guaranteed by design. Not subject to production testing.

© Diodes Incorporated
Figure 7 Gate Threshold Variation vs. Ambient Temperature

Figure 8 Diode Forward Voltage vs. Current

Figure 9 Typical Total Capacitance

Figure 10 Typical Leakage Current vs. Drain-Source Voltage

Figure 11 Gate Charge

Figure 12 SOA, Safe Operation Area
Figure 13 Transient Thermal Response

\[\frac{t_1}{t_2} = P \cdot R(t) \]

Duty Cycle, \(D = \frac{t_1}{t_2} \)

\[\theta_J - \theta_A = P \cdot R(t) \]

\[R_{\text{JA}} = \frac{220}{C/W} \]

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

<table>
<thead>
<tr>
<th>Dim</th>
<th>Min</th>
<th>Max</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.15</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>B</td>
<td>1.10</td>
<td>1.25</td>
<td>1.20</td>
</tr>
<tr>
<td>C</td>
<td>1.55</td>
<td>1.70</td>
<td>1.60</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>0.50</td>
</tr>
<tr>
<td>G</td>
<td>0.90</td>
<td>1.10</td>
<td>1.00</td>
</tr>
<tr>
<td>H</td>
<td>1.50</td>
<td>1.70</td>
<td>1.60</td>
</tr>
<tr>
<td>K</td>
<td>0.55</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>L</td>
<td>0.10</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>M</td>
<td>0.10</td>
<td>0.18</td>
<td>0.11</td>
</tr>
</tbody>
</table>

All Dimensions in mm

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.
IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

 1. are intended to implant into the body, or

 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated

www.diodes.com