

600V HALF BRIDGE GATE DRIVER IN SO-8

Description

The DGD2184M is a high-voltage and high-speed gate driver capable of driving N-Channel MOSFETs and IGBTs in a half bridge configuration. High-voltage processing techniques enable the DGD2184M's high-side to switch to 600V in a bootstrap operation.

The DGD2184M logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) for easy interfacing with controlling devices. The driver outputs feature high-pulse current buffers designed for minimum driver cross conduction. The DGD2184M has a fixed internal deadtime of 395ns (typ).

The DGD2184M is offered in the SO-8 (Type TH) package, and the operating temperature extends from -40°C to +125°C.

Applications

- DC-DC converters
- DC-AC inverters
- AC-DC power supplies
- Motor controls
- Class D power amplifiers

Typical Configuration

Features

- Floating High-Side Driver in Bootstrap Operation to 600V
- Drives Two N-Channel MOSFETs or IGBTs in Half Bridge Configuration
- 1.9A Source / 2.3A Sink Output Current Capability
- Outputs Tolerant to Negative Transients
- Internal Dead Time of 395ns to Protect MOSFETs
- Wide Low-Side Gate Driver and Logic Supply: 10V to 20V
- Logic Input (IN and SD*) 3.3V Capability
- Schmitt Triggered Logic Inputs with Internal Pull Down
- Undervoltage Lockout for High- and Low-Side Drivers
- Extended Temperature Range: -40°C to +125°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

Mechanical Data

- Package: SO-8 (Type TH)
- Package Material: Molded Plastic. "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 ⁽³⁾
- Weight: 0.075 grams (Approximate)

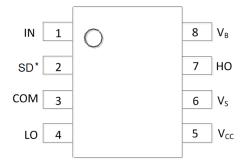
Top View

Ordering Information (Note 4)

Orderable Part Number	Packago	Marking	Reel Size (inch)	Tape Width (mm)	(mm) Packing	
Orderable Part Number	Fackage	Package Marking Reel Size (inch) Tape Width (mm	rape widin (min)	Qty.	Carrier	
DGD2184MS8-13	SO-8 (Type TH)	DGD2184M	13	12	2,500	Reel

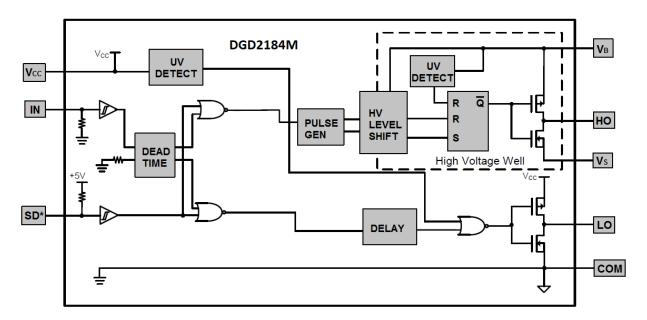
Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.


Marking Information

)¦¦ = Manufacturer's Marking DGD2184M = Product Type Marking Code YY = Year (ex: 23 = 2023) WW = Week (01 to 53)

Pin Diagrams



Top View SO-8

Pin Descriptions

Pin Number	Pin Name	Function
1	IN	Logic Input for High-Side and Low-Side Gate Driver Outputs (HO and LO), in Phase with HO
2	SD*	Logic Input for Shutdown, Enabled Low
3	COM	Low-Side and Logic Return
4	LO	Low-Side Gate Drive Output
5	Vcc	Low-Side and Logic Fixed Supply
6	Vs	High-Side Floating Supply Return
7	НО	High-Side Gate Drive Output
8	V _B	High-Side Floating Supply

Functional Block Diagram

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
High-Side Floating Supply Voltage	V _B	-0.3 to +624	V
High-Side Floating Supply Offset Voltage	Vs	$V_B - 24 \text{ to } V_B + 0.3$	V
High-Side Floating Output Voltage	V _{HO}	$V_S - 0.3$ to $V_B + 0.3$	V
Offset Supply Voltage Transient	dV _S / dt	50	V/ns
Low-Side Fixed Supply Voltage	V _{CC}	-0.3 to +24	V
Low-Side Output Voltage	V _{LO}	-0.3 to V _{CC} + 0.3	V
Logic Input Voltage (IN and SD*)	V _{IN}	-0.3 to V _{CC} + 0.3	V

Thermal Characteristics (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	P _D	0.625	W
Thermal Resistance, Junction to Ambient (Note 5)	R _{0JA}	200	°C/W
Operating Temperature	TJ	+150	
Lead Temperature (Soldering, 10s)	T _L	+300	°C
Storage Temperature Range	T _{STG}	-55 to +150	

Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board.

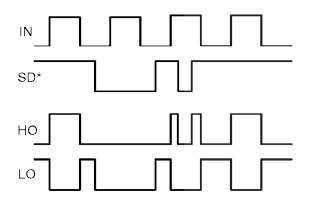
Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
High-Side Floating Supply Absolute Voltage	V_{B}	V _S + 10	V _S + 20	٧
High-Side Floating Supply Offset Voltage	Vs	(Note 6)	600	V
High-Side Floating Output Voltage	V_{HO}	Vs	V_{B}	V
Low-Side Fixed Supply Voltage	V _{CC}	10	20	V
Low-Side Output Voltage	V_{LO}	0	Vcc	V
Logic Input Voltage (IN and SD*)	V_{IN}	0	V _{CC}	V
Ambient Temperature	T _A	-40	+125	°C

Note: 6. Logic operation for V_S of -5V to +600V.

$\textbf{DC Electrical Characteristics} \ (V_{BIAS} \ (V_{CC}, \ V_{BS}) = 15 V, \ @T_A = +25 ^{\circ}C, \ unless \ otherwise \ specified.) \ (Note \ 7)$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Logic "1" Input Voltage	V_{IH}	2.5	_	_	V	$V_{CC} = 10V \text{ to } 20V$
Logic "0" Input Voltage	V_{IL}	_	_	0.8	V	$V_{CC} = 10V \text{ to } 20V$
SD* Input Positive Going Threshold	V_{SDTH+}	2.5	_	_	V	$V_{CC} = 10V \text{ to } 20V$
SD* Input Negative Going Threshold	V _{SDTH} -	_	_	0.8	V	$V_{CC} = 10V \text{ to } 20V$
High Level Output Voltage, V _{BIAS} – V _O	V _{OH}	_	_	1.2	V	$I_O = 0mA$
Low Level Output Voltage, Vo	V_{OL}	_	_	0.1	V	$I_O = 20mA$
Offset Supply Leakage Current	I _{LK}	_	_	50	μΑ	$V_B = V_S = 600V$
Quiescent V _{BS} Supply Current	I _{BSQ}	20	60	150	μΑ	$V_{IN} = 0V \text{ or } 5V$
Quiescent V _{CC} Supply Current	Iccq	0.4	1.0	1.8	mA	$V_{IN} = 0V \text{ or } 5V$
Logic "1" Input Bias Current	I _{IN+}	_	25	60	μΑ	$IN = 5V, SD^* = 0V$
Logic "0" Input Bias Current	I _{IN-}	_	_	1.0	μΑ	$IN = 0V, SD^* = 5V$
V _{BS} Supply Under-Voltage Positive Going Threshold	V _{BSUV+}	8.0	8.9	9.8	V	_
V _{BS} Supply Under-Voltage Negative Going Threshold	V_{BSUV}	7.4	8.2	9.0	V	
V _{CC} Supply Under-Voltage Positive Going Threshold	V _{CCUV+}	8.0	8.9	9.8	V	_
V _{CC} Supply Under-Voltage Negative Going Threshold	V _{CCUV} -	7.4	8.2	9.0	V	_
Output High Short Circuit Pulsed Current	I _{O+}	1.4	1.9	_	Α	V _O = 0V, PW ≤ 10μs
Output Low Short Circuit Pulsed Current	l ₀₋	1.7	2.3	_	Α	V _O = 15V, PW ≤ 10μs


Note: 7. The V_{IN} and I_{IN} parameters are applicable to the two logic input pins: IN and SD*. The V_O and I_O parameters are applicable to the respective output pins: HO and LO.

$\textbf{AC Electrical Characteristics} \ (V_{BIAS} \ (V_{CC}, \ V_{BS}) = 15 \text{V}, \ C_L = 1000 \text{pF}, \ @T_A = +25 ^{\circ}\text{C}, \ unless otherwise specified.})$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Turn-On Propagation Delay	ton	_	585	900	ns	$V_S = 0V$
Turn-Off Propagation Delay	t _{off}	_	170	400	ns	V _S = 0V or 600V
Shut-Down Propagation Delay	t _{SD}	_	180	270	ns	_
Delay Matching, HO & LO Turn-On	t _{DMON}	_	_	90	ns	_
Delay Matching, HO & LO Turn-Off	t _{DMOFF}	_	_	40	ns	$I_O = 0A$
Turn-On Rise Time	t _r	_	40	60	ns	$V_S = 0V$
Turn-Off Fall Time	t _f	_	20	35	ns	$V_S = 0V$
Deadtime: t _{DT LO-HO &} t _{DT HO-LO}	t _{DT}	345	395	445	ns	_

Timing Waveforms

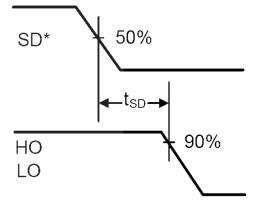


Figure 1. Input / Output Timing Diagram

Figure 2. Shutdown Waveform Definitions

Deadtime t_{DT LO-HO} = t_{ON HO} - t_{OFF LO}
t_{DT HO-LO} = t_{ON LO} - t_{OFF HO}
Deadtime matching
t_{MDT} = t_{DT LO-HO} - t_{DT HO-LO}

Delay matching t_{DM OFF} = t_{OFF} LO - t_{OFFT} HO

Figure 3. Switching Time Waveform Definitions

Typical Performance Characteristics (@T_A = +25°C, V_{CC} = 15V, unless otherwise specified.)

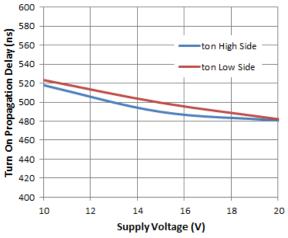


Figure 4. Turn-on Propagation Delay vs. Supply Voltage

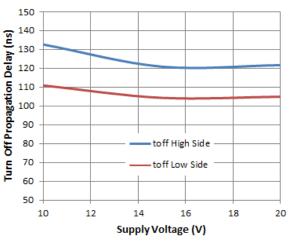


Figure 6. Turn-off Propagation Delay vs. Supply Voltage

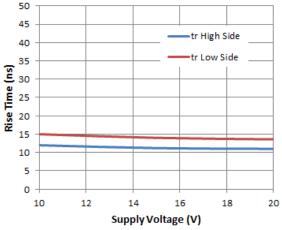


Figure 8. Rise Time vs. Supply Voltage

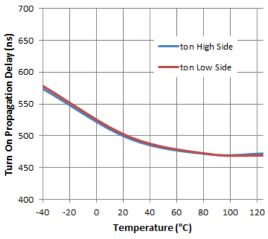


Figure 5. Turn-on Propagation Delay vs. Temperature

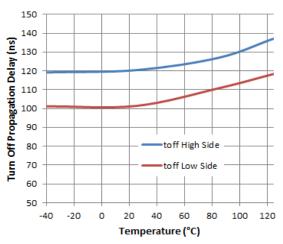


Figure 7. Turn-off Propagation Delay vs. Temperature

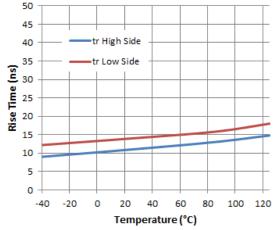


Figure 9. Rise Time vs. Temperature

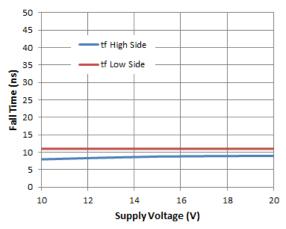


Figure 10. Fall Time vs. Supply Voltage

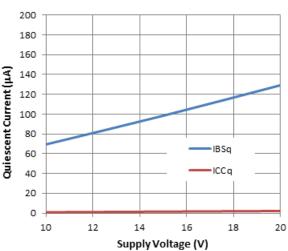


Figure 12. Quiescent Current vs. Supply Voltage

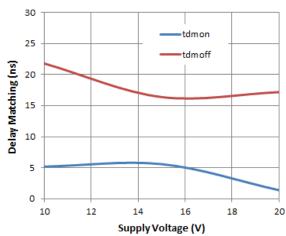


Figure 14. Delay Matching vs. Supply Voltage

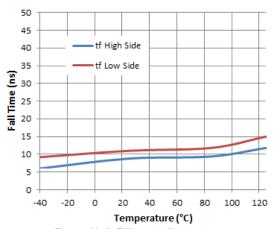


Figure 11. Fall Time vs. Temperature

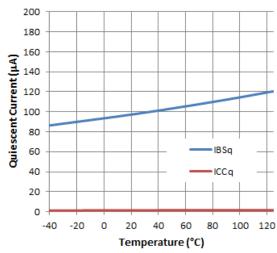


Figure 13. Quiescent Current vs. Temperature



Figure 15. Delay Matching vs. Temperature

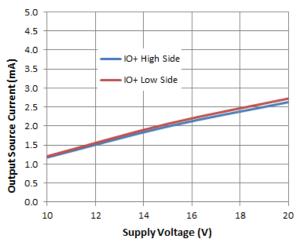


Figure 16. Output Source Current vs. Supply Voltage

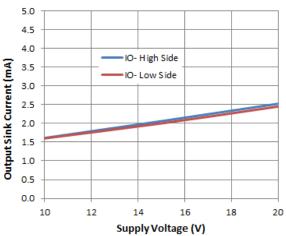


Figure 18. Output Sink Current vs. Supply Voltage

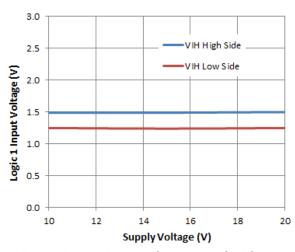


Figure 20. Logic 1 Input Voltage vs. Supply Voltage

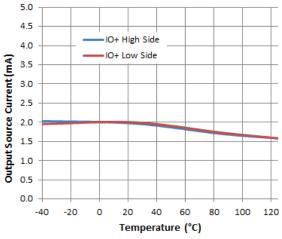


Figure 17. Output Source Current vs. Temperature

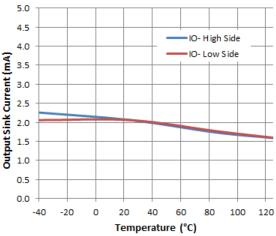


Figure 19. Output Sink Current vs. Temperature

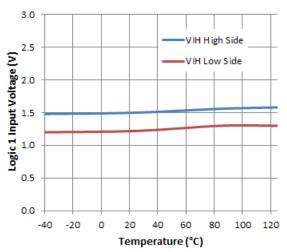


Figure 21. Logic 1 Input Voltage vs. Temperature

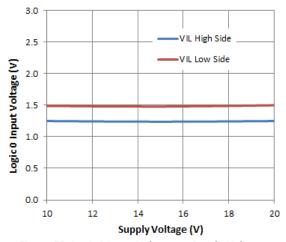


Figure 22. Logic O Input Voltage vs. Supply Voltage

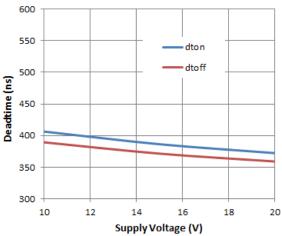


Figure 24. Deadtime vs. Supply Voltage

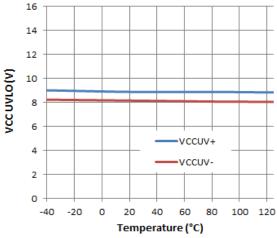


Figure 26. VCC UVLO vs. Temperature

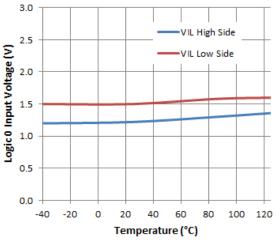


Figure 23. Logic 0 Input Voltage vs. Temperature

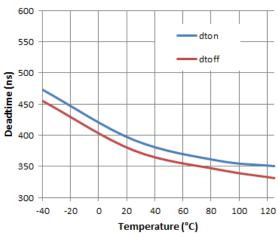


Figure 25. Deadtime vs. Temperature

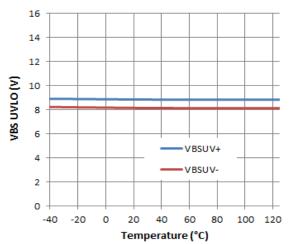
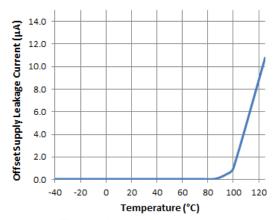
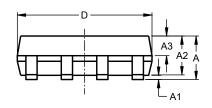


Figure 27. VBS UVLO vs. Temperature



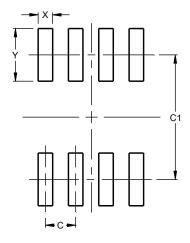

Figure 28. Offset Supply Leakage Current vs. Temperature



Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

SO-8 (Type TH)


	П	<u>H</u>		<u>H</u>	
			<u> </u>		- É1 É
Į		Ш		┦.	_
_	H Hbl -			∐ _	•

	SO-8 (Type TH)					
Dim	Min	Max	Тур			
Α		1.75				
A1	0.10	0.225				
A2	1.30	1.50	1.40			
A3	0.60	0.70	0.65			
b	0.39	0.47				
C	0.20	0.24				
D	4.80	5.00	4.90			
Е	5.80	6.20	6.00			
E1	3.80	4.00	3.90			
е	1	.27BSC	;			
h	0.25	0.50				
L	0.50 0.80					
L1	1.05REF					
а	0°	8°				
All [Dimensi	ons in	mm			

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

SO-8 (Type TH)

Dimensions	Value (in mm)
С	1.27
C1	5.20
Х	0.60
V	2 20

IMPORTANT NOTICE

- 1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.
- 9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners.

© 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com