General Description

The AZ70XX series ICs are under voltage detectors with a built in voltage threshold and low power consumption. The AZ70XX are specifically designed to accurately monitor power supplies.

The AZ70XX use a precision on-chip voltage reference and a comparator to measure the input operating voltage. These ICs can accurately reset the system after detecting voltage at the time of switching power on and instantaneous power off in various CPU systems and other logic systems. The detect voltage thresholds are 2.3V/2.5V/2.7V/2.9V/3.1V/3.3V/4.2V/4.5V for AZ7023/25/27/29/31/33/42/45 respectively. Built in hysteresis helps to prevent erratic operation in the presence of noise.

The AZ70XX series are available in 2 standard packages: TO-92 (bulk or ammo packing) and SOT-89.

Features

- Low Current Consumption:
 $I_{CL}=300\mu A$ Typical
 $I_{CH}=30\mu A$ Typical
- Low Minimum Operating Voltage for Output Resetting: 0.8V Typical
- Built in Hysteresis Voltage: 50mV Typical
- Open Collector Output
- Extended Temperature Range: -40 to 85°C

Applications

- Low Battery Voltage Detector
- Power Fail Indicator
- Processor Reset Generator
- Battery Backup Control
- Home Electric Appliances

Figure 1. Package Types of AZ70XX
Pin Configuration

Z Package (TO-92(Bulk Packing))

1. OUT
2. GND
3. VCC

Z Package (TO-92(Ammo Packing))

1. OUT
2. GND
3. VCC

R Package (SOT-89)

1. VCC
2. GND
3. OUT

Figure 2. Pin Configuration of AZ70XX (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ70XX
<table>
<thead>
<tr>
<th>Package</th>
<th>Temperature Range</th>
<th>Detect Voltage</th>
<th>Part Number</th>
<th>Marking ID</th>
<th>Packing Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>23: 2.3V</td>
<td>AZ7023Z-E1</td>
<td>AZ7023Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25: 2.5V</td>
<td>AZ7025Z-E1</td>
<td>AZ7025Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27: 2.7V</td>
<td>AZ7027Z-E1</td>
<td>AZ7027Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29: 2.9V</td>
<td>AZ7029Z-E1</td>
<td>AZ7029Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31: 3.1V</td>
<td>AZ7031Z-E1</td>
<td>AZ7031Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33: 3.3V</td>
<td>AZ7033Z-E1</td>
<td>AZ7033Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35: 3.5V</td>
<td>AZ7035Z-E1</td>
<td>AZ7035Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37: 3.7V</td>
<td>AZ7037Z-E1</td>
<td>AZ7037Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39: 3.9V</td>
<td>AZ7039Z-E1</td>
<td>AZ7039Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41: 4.1V</td>
<td>AZ7041Z-E1</td>
<td>AZ7041Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43: 4.3V</td>
<td>AZ7043Z-E1</td>
<td>AZ7043Z-G1</td>
<td>Lead Free</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45: 4.5V</td>
<td>AZ7045Z-E1</td>
<td>AZ7045Z-G1</td>
<td>Lead Free</td>
</tr>
</tbody>
</table>

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.
Absolute Maximum Ratings (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>-0.3 to 20</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation (Package Limitations, $T_A=25^\circ C$)</td>
<td>P_D</td>
<td>TO-92 Package: 400 mW</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOT-89 Package: 500 mW</td>
<td></td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>T_J</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{STG}</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{CC}</td>
<td>18</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
</tbody>
</table>
Electrical Characteristics

$T_A=25^\circ$C, unless otherwise specified.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detect Voltage</td>
<td>V_{DET}</td>
<td>$R_L=200\Omega$ (Note 2) $V_{OL} \leq 0.4V$</td>
<td>AZ7023R/Z</td>
<td>2.15</td>
<td>2.3</td>
<td>2.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZ7025R/Z</td>
<td>2.35</td>
<td>2.5</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZ7027R/Z</td>
<td>2.55</td>
<td>2.7</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZ7029R/Z</td>
<td>2.75</td>
<td>2.9</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZ7031R/Z</td>
<td>2.95</td>
<td>3.1</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZ7033R/Z</td>
<td>3.15</td>
<td>3.3</td>
<td>3.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZ7042R/Z</td>
<td>4.05</td>
<td>4.2</td>
<td>4.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AZ7045R/Z</td>
<td>4.35</td>
<td>4.5</td>
<td>4.65</td>
</tr>
<tr>
<td>Low-level Output Voltage</td>
<td>V_{OL}</td>
<td>$V_{CC}=V_{DET}$ (min)-0.05V $R_L=200\Omega$ (Note 2)</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>I_{OH}</td>
<td>$V_{CC}=18V$</td>
<td>0.1</td>
<td>μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hysteresis Voltage</td>
<td>V_{HYS}</td>
<td>$R_L=200\Omega$ (Note 2)</td>
<td>30</td>
<td>50</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>Detect Voltage Temperature Coefficient</td>
<td>$\Delta V_{DET} / \Delta T$</td>
<td>$R_L=200\Omega$ (Note 2)</td>
<td>±0.01</td>
<td>%/°C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit Current at On Time</td>
<td>I_{CCL}</td>
<td>$V_{CC}=V_{DET}$ (min)-0.05V</td>
<td>300</td>
<td>500</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Circuit Current at Off Time</td>
<td>I_{CCH}</td>
<td>$V_{CC}=5.25V$</td>
<td>30</td>
<td>50</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Minimum Operating Voltage</td>
<td>V_{OPR}</td>
<td>$R_L=200\Omega$ (Note 2) $V_{OL} \leq 0.4V$</td>
<td>0.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“L” Transmission Delay Time</td>
<td>t_{pHL}</td>
<td>V_{CC} changed from 5.25V to V_{DET} (min)-0.05V $R_L=1.0K\Omega$ $C_L=100p$ (Note 3)</td>
<td>10</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“H” Transmission Delay Time</td>
<td>t_{pLH}</td>
<td>V_{CC} changed from V_{DET} (min)-0.05V to 5.25V $R_L=1.0K\Omega$ $C_L=100p$ (Note 3)</td>
<td>15</td>
<td>μs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Current at On Time</td>
<td>$I_{OL\ I}$</td>
<td>$V_{CC}=V_{DET}$ (min)-0.05V $T_A=25^\circ$C (Note 4)</td>
<td>20</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{OL\ II}$</td>
<td>$V_{CC}=V_{DET}$ (min)-0.05V $T_A=-40$ to 85 °C (Note 4)</td>
<td>16</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance (Junction to Case)</td>
<td>θ_{JC}</td>
<td>TO-92</td>
<td>72</td>
<td>°C/W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOT-89</td>
<td>74</td>
<td>°C/W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 2: See test circuit 1 and Figure 12.
Note 3: See test circuit 2 and Figure 12.
Note 4: See test circuit 3. Adjusting the regulative power source until the reading value of voltage meter V is 0.4V, the reading value of current meter A is defined as "Output Current at On Time".
Electrical Characteristics (Continued)

Figure 4. Test Circuit 1

Figure 5. Test Circuit 2

Figure 6. Test Circuit 3
Typical Performance Characteristics

Figure 7. Detect Voltage vs. Temperature

Figure 8. Minimum Operating Voltage vs. Temperature

Figure 9. Output Current at On Time vs. Temperature

Figure 10. Low-level Output Voltage vs. Temperature
Typical Performance Characteristics (Continued)

Figure 11. Output Voltage Dynamic Response when \(V_{CC}\) Increases and Decreases

Operating Diagram

![Operating Diagram](image)

Figure 12. AZ70XX Timing Waveform (Note 5)

Note 5:
- Detect voltage: \(V_{DET-}\)
- Hysteresis voltage (\(V_{HYS}\)): \(V_{DET^+} - V_{DET^-}\)
- Release voltage: \(V_{DET^+}\)
- Minimum operating voltage: \(V_{OPR}\)
Operating Diagram (Continued)

Figure 12 is a typical timing waveform for AZ70XX. In normal steady-state operation when $V_{CC} > V_{DET-}$, the output will be in a logic high state and V_{OUT} is dependent upon the voltage that the pull-up resistor connected to.

Here is some explanations for AZ70XX's operation.

1. When the input voltage V_{CC} falls below V_{DET-}, the output will pull down to logic low after a delay time of t_{phL}. In general, at rated output current and V_{CC}, V_{OUT} can be pulled down to a voltage as low as within 0.4V from GND. (See the Electrical Characteristics section). The voltage level V_{DET-} means the detect voltage.

2. The output, V_{OUT}, will stay valid until V_{CC} falls below the minimum operating voltage, V_{OPR} (0.8V typical). Below minimum operating voltage, the output is undefined.

3. During power-up, V_{OUT} will remain undefined until V_{CC} rises above V_{OPR}, at which time the output will become valid. V_{OUT} will be in its active low state while $V_{OPR} < V_{CC} < V_{DET+}$ ($V_{DET+} = V_{DET-} + V_{HYS}$). V_{DET+} is the release voltage. V_{HYS} means the hysteresis voltage and is the difference voltage between the V_{DET+} and V_{DET-}.

4. When V_{CC} rises above V_{DET+}, the output will be in its inactive state. After a delay time of t_{plH}, V_{OUT} will be in its logic high state.

Typical Applications

Figure 13. Low Voltage Indicator

Figure 14. CPU Resetting Circuit
Mechanical Dimensions

TO-92 (Bulk Packing) Unit: mm (inch)

MIN

MAX

TYP
TO-92(Ammo Packing)
Unit: mm(inch)
Mechanical Dimensions (Continued)

SOT-89

Unit: mm (inch)

Oct. 2011 Rev. 2. 2 BCD Semiconductor Manufacturing Limited
IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE
- Headquarters
 BCD Semiconductor Manufacturing Limited
 No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China
 Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE
- Wafer Fab
 Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.
 800 Yi Shan Road, Shanghai 200233, China
 Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

 Shenzhen Office
 Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office
 Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1 S., Nanshan District, Shenzhen, China
 Tel: +86-755-8826 7951
 Fax: +86-755-8826 7865

 Taiwan Office
 BCD Semiconductor (Taiwan) Company Limited
 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan
 Tel: +886-2-2656 2808
 Fax: +886-2-2656 2806

 USA Office
 BCD Semiconductor Corp.
 30920 Huntwood Ave. Hayward, CA 94544, USA
 Tel: +1-510-324-2988
 Fax: +1-510-324-2788

http://www.bcdsemi.com