APX321/APX358/APX324
LOW VOLTAGE, RAIL-TO-RAIL INPUT AND OUTPUT
SINGLE/DUAL/QUAD OPERATIONAL AMPLIFIERS

Features

(For V+ = 5V and V− = 0V typical unless otherwise noted)
- Guaranteed 2.7V and 5V performance
- Crossover distortion eliminated
- Operating temperature range (-40°C to +85°C)
- Gain-bandwidth 1 MHz
- Low supply current
 - APX321 110 µA Typ
 - APX358 190 µA Typ
 - APX324 340 µA Typ
- Rail-to-rail output swing @ 10 kΩ
 - V− -10 mV
 - V+ +10 mV
- Input Common Mode Voltage Range (0 to V− -0.2V)
- Manufactured in standard CMOS process
- SOT353, SOT25, MSOP-8L, SOP-8L and TSSOP-14L:
 Available in “Green” Molding Compound (No Br, Sb)
- Lead-free Finish / RoHS Compliant (Note 4)

General Description

The APX321/APX358/APX324 are low voltage (2.5V to 5.5V) single, dual and quad operational amplifiers. The APX321/APX358/APX324 are designed to effectively reduce cost and space at low voltage levels. These devices have the capability of rail-to-rail output swing and input common-mode voltage range. They can also achieve an efficient speed-to-power ratio, utilizing 1 MHz bandwidth and 1 V/µs slew rate at a low supply current. Reducing noise pickup and increasing signal integrity can be achieved by placing the device close to the signal source. The APX321 is available in 5-Pin SOT353/SOT25 packages that reduce space on pc boards and portable electronic devices. The APX324 is available in the TSSOP-14L package. The APX358 is available in the MSOP-8L and SOP-8L packages.

Applications

- Active filters
- General purpose low voltage applications
- General purpose portable devices

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
<th>Green</th>
<th>Packing</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 : Quad (Note 2)</td>
<td>SE : SOT353</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 : Dual (Note 3)</td>
<td>TS : TSSOP-14L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S : SOP8L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M8 : MSOP-8L</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device Code

- APX321WG-7
- APX321SEG-7
- APX324TSG-13
- APX358SG-13
- APX358MBG-13

Notes:
1. APX321 is only available for SOT25 and SOT353.
2. APX324 is only available for TSSOP-14L.
3. APX358 is only available for SOP-8L and MSOP-8L.
5. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

www.diodes.com

© Diodes Incorporated
Pin Assignments

(1) SOT25 / SOT353

(Top View)

IN+ 1 5 V+
V- 2
IN. 3 4 OUT

SOT25 / SOT353

(2) SOP-8L / MSOP-8L

(Top View)

OUTA 1 8 V+
IN^A+ 2
IN^A- 3
V- 4
OUTB 7 6 IN^B- IN^B+

SOP-8L / MSOP-8L

(3) TSSOP-14L

(Top View)

OUTA 1 14 OUTD
IN^A+ 2
IN^A- 3
V+ 4
IN^B+ 5
IN^B- 6
OUTB 7

TSSOP-14L
Absolute Maximum Ratings
(Note 6)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD HBM</td>
<td>Human Body Model ESD Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX321</td>
<td>4000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>APX358</td>
<td>4000</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>APX324</td>
<td>4500</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ESD MM</td>
<td>Machine Model ESD Protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX321</td>
<td>350</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>APX358</td>
<td>350</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>APX324</td>
<td>250</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Differential Input Voltage</td>
<td>±Supply Voltage</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V⁺ - V⁻</td>
<td>Supply Voltage</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Output Short Circuit to V⁺</td>
<td>(Note 7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output Short Circuit to V⁻</td>
<td>(Note 8)</td>
<td></td>
</tr>
<tr>
<td>T<sub>ST</sub></td>
<td>Storage Temperature</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>T<sub>J</sub></td>
<td>Maximum Junction Temperature</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Operating Ratings
(Note 6)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V⁺ - V⁻</td>
<td>Supply Voltage</td>
<td>2.5 to 5.5</td>
<td>V</td>
</tr>
<tr>
<td>T<sub>A</sub></td>
<td>Operating Ambient Temperature Range</td>
<td>-40 to +85</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes: 6. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.
Electrical Characteristics

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25^\circ C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = 1.0V$, $V_O = V^+/2$ and $R_L > 1 \, M\Omega$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min (Note 10)</th>
<th>Typ. (Note 9)</th>
<th>Max (Note 10)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td></td>
<td>1.7</td>
<td>7</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>TCV_{OS}</td>
<td>Input Offset Voltage Average Drift</td>
<td></td>
<td>5</td>
<td></td>
<td>$\mu V/^\circ C$</td>
<td></td>
</tr>
<tr>
<td>I_I</td>
<td>Input Bias Current</td>
<td></td>
<td>10</td>
<td></td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td></td>
<td>5</td>
<td>50</td>
<td>nA</td>
<td></td>
</tr>
<tr>
<td>CMRR</td>
<td>Common Mode Rejection Ratio</td>
<td>$0V \leq V_{CM} \leq 2.4V$</td>
<td>50</td>
<td>63</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>PSRR</td>
<td>Power Supply Rejection Ratio</td>
<td>$2.7V \leq V^+ \leq 5V$ $V_O = 1V$</td>
<td>50</td>
<td>60</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Input Common-Mode Voltage Range</td>
<td>For CMRR ≥ 50dB</td>
<td>0</td>
<td>-0.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_O</td>
<td>Output Swing</td>
<td>$R_L = 10 , k\Omega$ to 1.35V</td>
<td>$V^+ - 100$ $V^- - 20$</td>
<td>20</td>
<td>100</td>
<td>mV</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>Single amplifier</td>
<td>110</td>
<td>140</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Both amplifiers</td>
<td>190</td>
<td>340</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>All four amplifiers</td>
<td>340</td>
<td>680</td>
<td>μA</td>
<td></td>
</tr>
</tbody>
</table>

2.7V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25^\circ C$, $V^+ = 2.7V$, $V^- = 0V$, $V_{CM} = 1.0V$, $V_O = V^+/2$ and $R_L > 1 \, M\Omega$.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min (Note 10)</th>
<th>Typ. (Note 9)</th>
<th>Max (Note 10)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBWP</td>
<td>Gain-Bandwidth Product</td>
<td>$C_L = 200 , pF$</td>
<td>1</td>
<td></td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>ϕ_m</td>
<td>Phase Margin</td>
<td></td>
<td>60</td>
<td></td>
<td>Deg</td>
<td></td>
</tr>
<tr>
<td>G_m</td>
<td>Gain Margin</td>
<td></td>
<td>10</td>
<td></td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>e_n</td>
<td>Input-Reflected Voltage Noise</td>
<td>$f > 50 , KHz$</td>
<td>23</td>
<td></td>
<td>nV/\sqrt{Hz}</td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics (Continued)

5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25^\circ C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 2.0V$, $V_O = V^+/2$ and $R_L > 1 \, \Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min (Note 10)</th>
<th>Typ. (Note 9)</th>
<th>Max (Note 10)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OS}</td>
<td>Input Offset Voltage</td>
<td></td>
<td>1.7</td>
<td>7</td>
<td>9</td>
<td>mV</td>
</tr>
<tr>
<td>TCV_{OS}</td>
<td>Input Offset Voltage Average Drift</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>µV/°C</td>
</tr>
<tr>
<td>I_B</td>
<td>Input Bias Current</td>
<td></td>
<td>15</td>
<td>250</td>
<td>500</td>
<td>nA</td>
</tr>
<tr>
<td>I_{OS}</td>
<td>Input Offset Current</td>
<td></td>
<td>5</td>
<td>50</td>
<td>150</td>
<td>nA</td>
</tr>
<tr>
<td>$CMRR$</td>
<td>Common Mode Rejection Ratio $0V \leq V_{CM} \leq 4.7V$</td>
<td></td>
<td>50</td>
<td>65</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>$PSRR$</td>
<td>Power Supply Rejection Ratio $2.7V \leq V^+ \leq 5V$ $V_O = 1V$, $V_{CM} = 1V$</td>
<td></td>
<td>50</td>
<td>60</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Input Common-Mode Voltage Range For CMRR ≥ 50dB</td>
<td></td>
<td>0</td>
<td>-0.2</td>
<td>4.8</td>
<td>V</td>
</tr>
<tr>
<td>A_V</td>
<td>Large Signal Voltage Gain $R_L = 2 , k\Omega$ (Note 11)</td>
<td></td>
<td>15</td>
<td>100</td>
<td></td>
<td>V/mV</td>
</tr>
<tr>
<td>V_O</td>
<td>Output Swing $R_L = 2 , k\Omega$ to 2.5V $V^+ - 300$ $V^+ - 50$</td>
<td></td>
<td>50</td>
<td>300</td>
<td>400</td>
<td>mV</td>
</tr>
<tr>
<td></td>
<td>$R_L = 10 , k\Omega$ to 2.5V $V^+ - 100$ $V^+ - 10$</td>
<td></td>
<td>10</td>
<td>180</td>
<td>280</td>
<td>mV</td>
</tr>
<tr>
<td>I_O</td>
<td>Output Short Circuit Current Sourcing, $V_O = 0V$</td>
<td></td>
<td>5</td>
<td>60</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Sinking, $V_O = 5V$</td>
<td></td>
<td>10</td>
<td>90</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_S</td>
<td>Supply Current</td>
<td>APX321 Single amplifier</td>
<td>110</td>
<td>140</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>APX358 Both amplifiers</td>
<td>190</td>
<td>340</td>
<td>600</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APX324 All four amplifiers</td>
<td>340</td>
<td>680</td>
<td>1100</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>θ_{JA}</td>
<td>Thermal Resistance Junction-to-Ambient</td>
<td>SOT353 (Note 12)</td>
<td>330</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>SOT25 (Note 12)</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>TSSOP-14L (Note 12)</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>MSOP-8L (Note 12)</td>
<td></td>
<td>203</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>SOP-8L (Note 12)</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics (Continued)

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_A = 25^\circ C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = 2.0V$, $V_O = V^+/2$ and $R_L > 1 \, M\Omega$. **Boldface** limits apply at the temperature extremes.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min (Note 10)</th>
<th>Typ. (Note 9)</th>
<th>Max (Note 10)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>Slew Rate</td>
<td>(Note 13)</td>
<td>1</td>
<td></td>
<td></td>
<td>V/µs</td>
</tr>
<tr>
<td>GBWP</td>
<td>Gain-Bandwidth Product</td>
<td>$C_L = 200 , pF$</td>
<td>1</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Φ_m</td>
<td>Phase Margin</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>Deg</td>
</tr>
<tr>
<td>G_m</td>
<td>Gain Margin</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>e_n</td>
<td>Input-Referred Voltage Noise</td>
<td>$f > 50 , KHz$</td>
<td>23</td>
<td></td>
<td></td>
<td>nV/\sqrt{Hz}</td>
</tr>
</tbody>
</table>

Notes:

7. Shorting output to V^+ will adversely affect reliability.
8. Shorting output to V^- will adversely affect reliability.
9. Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
10. All limits are guaranteed by testing or statistical analysis.
11. R_L is connected to V^-. The output voltage is $0.5V \leq V_O \leq 4.5V$.
12. All numbers are typical, and apply for packages soldered directly onto a PC board in still air.
13. Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.
Typical Performance Characteristics

Unless otherwise specified, $V_s=±5V$, single supply, $T_A=25°C$

Supply Current vs. Supply Voltage

Output Voltage Swing vs. Supply Voltage

PSRR vs. Frequency

CMRR vs. Frequency

CMRR vs. Input Common Mode Voltage

ΔV_{os} vs. CMR
Typical Performance Characteristics (Continued)

Sourcing Current vs. Output Voltage (2.7V)

Sourcing Current vs. Output Voltage (5V)

Sinking Current vs. Output Voltage (2.7V)

Sinking Current vs. Output Voltage (5V)

Input Voltage vs. Output Voltage

Output voltage referenced to Vcc-V

Output voltage referenced to GND-V

Output voltage referenced to Vcc-V

Output voltage referenced to GND-V

Output voltage referenced to GND-V

Output voltage referenced to Vcc-V

Input voltage(uV)

Output voltage(V)

RL=600ohm

RL=10kohm

RL=2k ohm

Vs=+/- 2V

0 50 100 150 200 250 300

0 0.5 1.0 1.5 2.0

0 1E-3 0.01 0.1 1 10

Vcc=2.7V

Vcc=5V

Vcc=5V

Vcc=5V
Typical Performance Characteristics (Continued)

- Frequency Response vs. Resistive Load (2.7V)
- Frequency Response vs. Resistive Load (5V)
- Frequency Response vs. Capacitive Load (2.7V)
- Frequency Response vs. Capacitive Load (5V)
- Non-Inverting Large Signal Pulse Response
- Non-Inverting Large Signal Pulse Response
Typical Performance Characteristics (Continued)

Non-Inverting Large Signal Pulse Response

Non-Inverting Small Signal Pulse Response

Inverting Large Signal Pulse Response

Inverting Small Signal Pulse Response
Typical Performance Characteristics (Continued)

Inverting Large Signal Pulse Response

Inverting Small Signal Pulse Response

Stability vs. Capacitive Load
Typical Performance Characteristics (Continued)

Stability vs. Capacitive Load

Slew Rate vs. Supply Voltage

Input Voltage Noise

Stability vs. Capacitive Load

Slew Rate vs. Supply Voltage

Input Voltage Noise
Typical Performance Characteristics (Continued)

Input Voltage Noise (2.7V)

![Graph showing input voltage noise vs. frequency](image-url)
Marking Information

(1) SOT25 / SOT353

- **Top View**
- XX: Identification code
- Y: Year 0~9
- W: Week: A~Z: 1~26 week; a~z: 27~52 week; z represents 52 and 53 week
- X: A~Z: Green

### Device	Package type	Identification Code
APX321W | SOT25 | V2
APX321SE | SOT353 | V3

(2) TSSOP-14L

- **Top View**
- G: Green
- YY: Year: 08, 09, 10~
- WW: Week: 01~52; 52
- X: Internal Code

(3) SOP-8L

- **Top View**
- G: Green
- YY: Year: 08, 09, 10~
- WW: Week: 01~52; 52
- X: Internal Code
Marking Information (Continued)

(4) MSOP-8L

(Top View)

Logo

Part Number

APX358

A-Z : Green
Y : Year : 0~9
W : Week : A~Z : 1~26 week;
 a~z : 27~52 week; z represents
 52 and 53 week

Package Information (All Dimensions in mm)

(1) Package Type: SOT25
(2) Package Type: SOT353

(3) Package Type: TSSOP-14L
(4) Package Type: SOP-8L

(5) Package Type: MSOP-8L
IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.