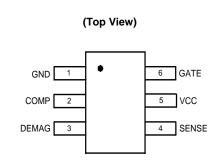


Description

The AP3129 is a highly integrated multi-mode peak current controller, which specially provides high efficiency at light load for IoT application. Meanwhile, the AP3129 features a proprietary audible noise elimination technology to ease the acoustic noises from electronic and magnetic components.

The AP3129 is a multi-mode controller, which changes operating mode according to load conditions. Under heavy-load condition, the device operates in CCM (continuous-conduction mode) with a fixed switching frequency of 65kHz, which is helpful to system design with small transformer size. When the loading is decreasing, it enters QR (Quasi Resonant) or Green mode with valley switching for the higher power conversion efficiency. At light load or no load, the IC will operate with its proprietary burst mode to minimize power consumption with the minimum switching frequency (about 22kHz).

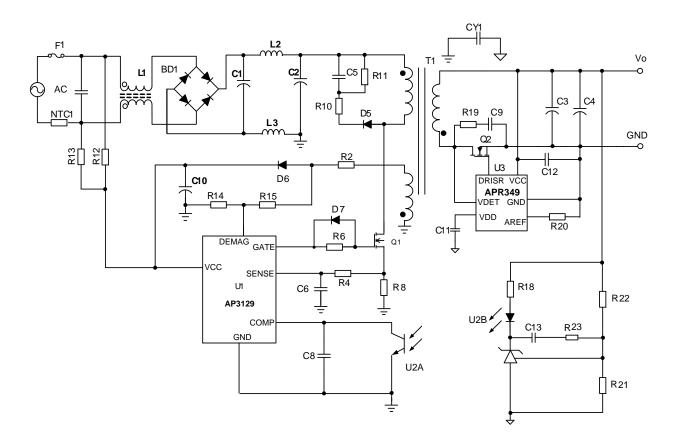

The controller architecture is designed to authorize a transient peak power excursion for peak load. It means the frequency can be increased from 65kHz to 130kHz until the peak event disappears.

In addition, piecewise linear line compensation ensures accurate constant output power limit over an entire line voltage range.

Features

- Multiple Operation Modes
 - 130kHz Maximum Frequency for Peak Load
 - 65kHz Fixed-Frequency CCM Operation for Full Load
 - 80kHZ Maximum Clamping Frequency for QR Mode
 - Valley Switching Operation in Green Mode
 - Burst Mode Control for Light Load
 - High Efficiency at Light Load (> 90% Efficiency at 10% Load)
- Proprietary Audible Noise Elimination Technology
- Soft Start During Startup Process
- Internal Slope Compensation
- Frequency Dithering for Reducing EMI
- VCC Maintain Mode
- Low No-Load Consumption
- Comprehensive System Protection Features
 - Secondary Winding Short Protection
 - VCC Overvoltage Protection (VOVP)
 - Line Overvoltage Protection (LOVP)
 - Overload Protection (OLP)
 - Cycle-by-Cycle Overcurrent Protection
 - Pin-Fault Protection
 - Brown-In/Out Protection (BNI/BNO)
 - Secondary Side OVP (SOVP) and UVP (SUVP)
 - Internal OTP
- SOT26 (Type CJ) is Available
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative. <u>https://www.diodes.com/quality/product-definitions/</u>
- Notes:
- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

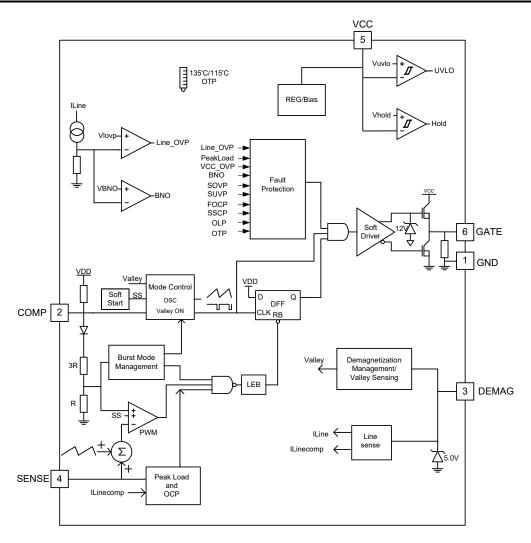
Pin Assignments


SOT26 (Type CJ)

Applications

- IoT (Internet of Thing) offline power
- Home appliances: smart speakers, AC fans, rice cookers, shavers, milk machines
- TV/Monitor standby power
- AC/DC adapters or quick chargers

Typical Applications Circuit


Typical Application

Pin Descriptions

•		
Pin Number	Pin Name	Function
1	GND	Ground
2	COMP	Feedback Input. Directly Connected to the Optocoupler.
3	DEMAG	Demagnetization Input. Sense Voltage from Auxiliary Winding.
4	SENSE	Current Sense
5	VCC	Supply Voltage of Driver and Control Circuits
6	GATE	Gate Driver Output

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating	Unit
Vcc	Power Supply Voltage	32	V
VCOMP, VSENSE, VDEMAG	COMP, SENSE, DEMAG Pins Input Voltage (Note 5)	-0.3 to 7	V
Vgate	Gate Pin Voltage (Note 5)	-0.3 to 16	V
θ」Α	Thermal Resistance (Junction to Ambient) (Note 6)	149	°C/W
θıc	Thermal Resistance (Junction to Case) (Note 6)	75	°C/W
PD	Power Dissipation at $T_A < +25^{\circ}C$	500	mW
TJ	Operating Junction Temperature	-40 to +150	°C
Tstg	Storage Temperature Range	-65 to +150	°C
F0D	Human Body Model	2,000	V
ESD	Charge Device Model	800	V

4. Stresses greater than those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Notes: Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability. 5. If -0.3V to -0.5V negative voltage is applied to DEMAG/SENSE/GATE pin, the period of negative pulse is lower than 0.4µs. 6. Test condition: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch² cooling area.

Recommended Operating Conditions

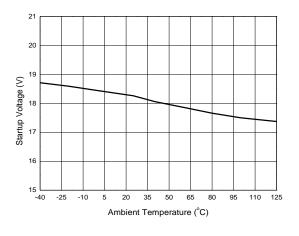
Symbol	Parameter	Min	Max	Unit
Vcc	Supply Voltage	9	26	V
ТА	Ambient Temperature	-40	+85	°C

Electrical Characteristics (@ T_A = -40°C to +85°C, V_{CC} = 18V, unless otherwise specified.)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Supply Voltage	e (VCC Pin)				1	<u> </u>
Vcc_ovp	VCC OVP Threshold Voltage	_	26.5	28	29.5	V
Vcc_on	VCC On Threshold Voltage	_	16.5	18	19.5	V
Vcc_uvlo	VCC UVLO Threshold Voltage	_	5.8	6.3	6.8	V
Vcc_et	VCC Holdup Mode Entry Point	_	6.5	7.3	8.0	V
Vcc_ex	VCC Holdup Mode Exit Point	_	_	Vcc_et+0.8	_	V
Icc_st	Startup Current	Vcc < Vcc_on	_	1	5	μA
		VCOMP = 0V, IDEMAG = 0mA	300	376	425	μA
ICC_OP	Operating Current	VCOMP = 1.2V, VCC = 16V	0.75	0.9	1.15	mA
GATE Section	(GATE Pin)		•			
Vgate_h	GATE High Voltage	ISOURCE = 20mA, Vcc = 16V	10	11.5	13.5	V
Vgate_l	GATE Low Voltage	ISINK = 20mA, Vcc = 16V	_	0.06	0.20	V
tgate-rise	Rising Time	CL= 1nF	_	350		ns
tgate-fall	Falling Time	CL= 1nF	_	50		ns
Current Sense	Section (SENSE Pin)		•			
VTH_OCP1	Threshold of OCP1 at Low Line	_	0.5	0.525	0.55	V
Rocp1	Rocp at Low Line	Idem = 500µA	31	36	41	kΩ
VTH_OCP2	Threshold of OCP2 at Low Line	_	0.8	0.825	0.85	V
VSOCP	Threshold Voltage of Secondary Rectifier Short Protection	—	1.2	1.25	1.3	V
Rocp2	Rocp at Low Line	—	36	41	46	kΩ
VTH-SSCP	SSCP Voltage	—	30	50	70	mV
t LEB	Leading Edge Blanking Time	—	120	240	370	ns
tpd	Internal Propagation Delay Time	—	—	80	_	ns
tD_OCP1	Over-Power Protection Debounce Time	(Note 7)	40	60	80	ms
tD_OCP2	Peak Load Protection Debounce Time	(Note 7)	10	17	25	ms
Feedback Sect	tion (COMP Pin)					
VCOMP_OP	Open-Loop Voltage	COMP Pin Open-Circuited	4.0	4.5	_	V
VCOMP_PK	Over Peak Load Protection	_	3.6	3.9	4.25	V
RCOMP	Internal Pullup Resistor	_	22	27	31	kΩ
KCOMP-SENSE	The Ratio of VCOMP to VSENSE	_	2.7	3.2	3.7	V/V
VFB-PEAK-	Start of Dock Frequency Pieing	Low Line (Note 8)	_	3.45		V
START	Start of Peak Frequency Rising	High Line (Note 8)	_	2.45		V
VFB-PEAK-END	End of Peak Frequency Rising	(Note 8)	—	VFB-PEAK-START+0.2	—	V
	Frequency Foldback Enter Voltage	Low Line	—	2.05	—	V
VFOLD_EN		High Line (Note 8)	—	1.925	_	V
VFOLD_EX	Frequency Foldback Exit Voltage	(Note 8)	—	VFOLD_EN-0.35	_	V
VELIDOT ENTER	Burst Mode Entry Voltage	Low Line	1.40	1.50	1.60	V
VBURST_ENTRY		High Line	1.37	1.47	1.57	V
VBURST_HYS	Burst Mode Hysteresis Voltage	_	_	0.030	_	V

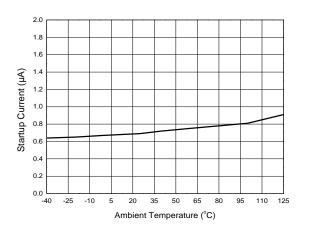
Notes: 7. Data measured in IC test mode.

8. Guaranteed by design.

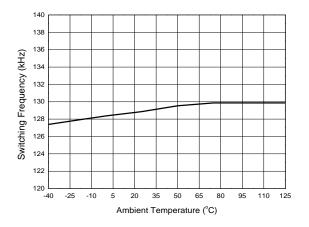

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Scillator Section						
fsw_pl_max	Maximum Switching Frequency in Peak Load Mode	_	120	130	140	kHz
fsw_min	Minimum Switching Frequency	—	20	22.5	25	kHz
6	5 (00)	High Line	60	65	70	kHz
fsw_ccm	Frequency of CCM	Low Line	60	65	70	КПД
DMAX	Maximum Duty for Peak Load	—	75	79	83	%
tmax_on	Maximum ton for Valley-on Switching Mode	—	11	13.5	16	μs
EMAG Section (DE	MAG Pin)					
tblk_demag	Blanking Time	(Note 8)	—	1.4	_	μs
Vth_ovp	VOUT OVP Threshold Voltage	—	2.7	2.8	2.9	V
Vth_uvp	VOUT UVP Threshold Voltage	—	0.4	0.5	0.6	V
tD_UVP	Blanking Time of VOUT_UVP	—	15	25	35	ms
Vzcd_demag	Zero Current Detection Threshold Voltage	(Note 7)	_	35	_	mV
toυτ	Timeout After Last Zero Current Detection	Correlation with t _{BLK_DEMAG} (Note 8)	—	5	_	μs
VCLP-L	Low Level for Clamping Voltage	Idemag = -200µА	-120	-50	_	mV
VCLP-H	High Level for Clamping Voltage	IDEMAG = 1mA	4.5	5	_	V
IDEMAG_BNI	Brown-In Protection Threshold Current	Correlation with IDEMAG_BNO (Note 8)	—	-120	_	μA
IDEMAG_BNO	Brown-Out Protection Threshold Current	—	-120	-110	-100	μA
td_bno	Debounce Time of Brown Out	(Note 8)	—	60	—	ms
IDEMAG-HLSW	High/Low Line Switching Threshold Current	—	225	-255	285	μA
IDEMAG_OVP	Bulk OVP Protection Threshold Current	—	-770	-690	-610	μA
tD_BulkOVP	Delay Time of Bulk OVP	(Note 8)	—	3.0	_	s
ternal OTP Section	1		·			
OTD	OTP Enter	(Note 8)	_	+135		°C
OTP	OTP Exit	(Note 8)	_	+115	_	°C

Flectrical Characteristics (@ TA = -40 to +85°C. Voc = 18V. unless otherwise specified.) (continued)

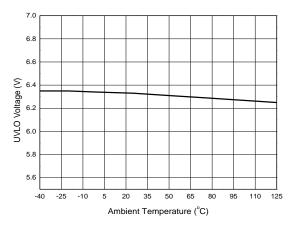
 7. Data measured in IC test mode.
8. Guaranteed by design. Notes:

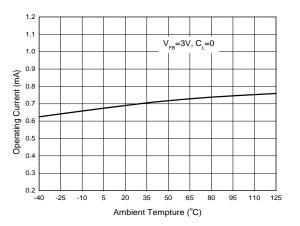


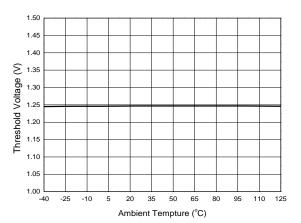
Performance Characteristics



V_{CC_ON} Threshold vs. Ambient Temperature

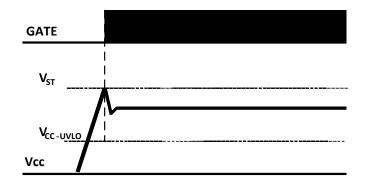

ICC_ST Startup Current vs. Ambient Temperature


Maximum Switching Frequency in Peak Load vs. Ambient Temperature


V_{CC_UVLO} Threshold vs. Ambient Temperature

ICC_OP Operating Current vs. Ambient Temperature

Threshold Voltage of Secondary Rectifier Short Protection vs. Ambient Temperature

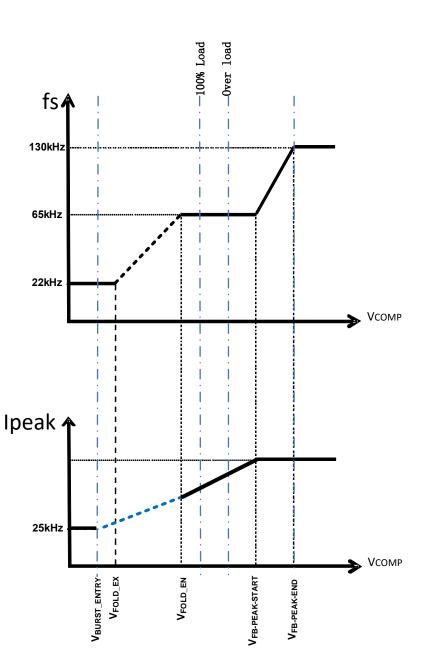


Operation Description

The AP3129 implements a multi-mode flyback converter utilizing peak current control the switch off event. It operates in continuous condition mode (CCM) and valley-on switching to provide high-efficiency solution. The IC is an ideal candidate where low parts count and cost effectiveness are the key parameters in AC-DC adapters.

Startup Timing

VCC capacitor charging current comes from divided resistor for X-CAP discharging in AC input terminal. When the VCC is rising up to the startup voltage (V_{CC_ON}), the current source turns off. And the AP3129 will output 4 switching pulses to detect the I_{DEMAG} current flowing through the DEMAG pin pullup resistor. Thus, the AC line voltage can be detected. If the input voltage is lower than the brown-in voltage, the IC will enter into restart status. Once the input voltage is higher than the brown-in voltage, the AP3129 will start working, the output voltage will ramp up, and the auxiliary winding voltage is going up accordingly. The V_{CC} voltage begins going down from V_{CC_ON} till VCC capacitor charging is taken over by the auxiliary winding voltage.


Frequency Control Strategy

As shown in Figure 2, the AP3129 changes operating modes according to different load conditions. When the device operates in CCM mode in heavy load in low line voltage, it is advantageous to achieve high power conversion efficiency, and is possible to implement a small-sized adapter with a small transformer. There are some special applications (smart speakers, printers, etc.) where the output load heavily changes from a normal to a peak value. At this time, to avoid growing the transformer size, an optional technique consists in clamping the peak current up to a maximum value, and authorizes frequency increase to a certain point (130kHz) to let the converter deliver more power to output. This power excursion can only be temporary and its duration is set by the internal overload timer

When the loading goes low, the system enters into QR mode or green mode with valley-on switching, and it can significantly reduce switching loss, especially in high line. Thus, high power conversion efficiency can be achieved. In order to avoid an excessive switching loss at very high switching frequency operations, there is a fixed 80kHz frequency limitation. As the load decreases, the internal oscillators reduce its switching frequency according to the feedback level. Once the COMP pin voltage is lower than V_{BURST_ENTRY}, the controller enters burst mode, and the peak current freezes to a fixed value. Operating in this mode ensures high efficiency at low power and excellent no-load power performance. A minimum clamp frequency will prevent the switching frequency from dropping below 22kHz to eliminate the risk of audible noise.

AP3129

Valley-On Switching

Valley-on switching is regarded as a soft switching technology which always turns on the primary MOSFET at the valley status of the Drain-to-Source voltage (V_{DS}). Compared to traditional hard switching, it can reduce the switching power loss of MOSFET and achieve good EMI behavior without additional BOM cost.

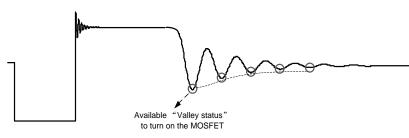


Figure 3. Valley Detection

Figure 3 shows the primary MOSFET V_{DS} waveform. When the secondary-side current drops to zero, the primary inductance L_M and the effective MOSFET output capacitor C_{oss} begins to resonant. The resonant frequency is approximately $1/2\pi\sqrt{LM * Coss}$. The IC controller takes advantage of the drain voltage ringing and turns on the power switch at the drain ringing voltage valley to reduce switching loss and EMI. The valley is detected by the DEMAG pin through a pair of voltage dividers. At the primary MOSFET turning-off time once the voltage on the DEMAG pin is detected below 35mV, one "valley status" is counted. According to the frequency control strategy of the AP3129, one proper "valley status" will be selected to turn on the MOSFET. To prevent a false-trigger of the V_{DS} ring caused by a leakage inductance, the valley detection function is blanked within the t_{BLK_DEMAG} when the primary MOSFET turns off. When the COMP voltage decreases, the current "valley-on status" is forced to shift to another available "valley-on status". The maximum valley number for turn-on reaches to the tenth. When the valley quantities exceed tenth valleys, the system will operate in hard switching conditions.

Frequency Jittering

The AP3129 integrates an active frequency-dithering function to improve the EMI performance. As shown in Figure 4, an internal low frequency modulation signal varies the pace at which the oscillator frequency is modulated, and produces a periodical excursion. This helps spread out energy in conducted noise analysis. To improve the EMI performance during low power and middle power level, the jittering circuit persists in working in frequency foldback mode because of an innovative implementation of the AP3129.

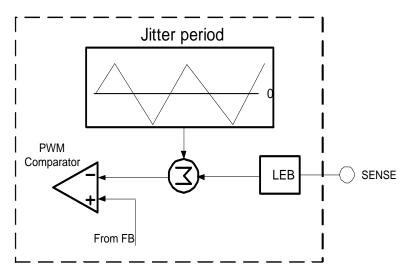


Figure 4. Frequency Jittering

VOUT OVP & UVP

The AP3129 provides output OVP and UVP protection function. The auxiliary winding voltage during secondary rectifier conducting period reflects the output voltage. A divided voltage network is connected to the auxiliary winding and DEMAG pin. The DEMAG pin will detect the equivalent output voltage with a delay of tBLK_DEMAG from the falling edge of the GATE driver signal, as shown in Figure 5. The detected voltage will be compared to the inner SOVP and SUVP threshold voltage. If the SOVP or SUVP threshold is reached continuously by 6 switching cycles, the SOVP or SUVP protection will be triggered, the AP3129 will shut down switching pulses, and the system will restart when the V_{CC} voltage falls below the UVLO voltage.

To prevent a false-trigger of the SUVP during startup process, the SUVP protection function will be ignored for a blank time of tD_UVP.

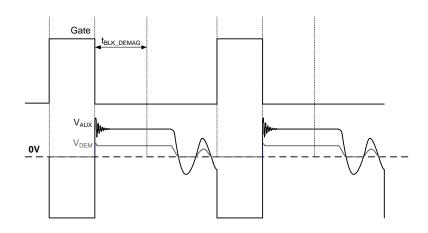
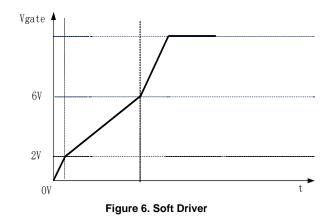



Figure 5. SOVP and SUVP

Soft Driver

The AP3129 gate sinking current is higher than 600mA, and the drive control includes three steps (see Figure 6). The first step is from 0V to 2V driving voltage, and the second step is from 2V to 6V within a period of 250ns. The third step is from 6V up to the gate clamp voltage. For the first-step and third-step, the gate voltage will be charged rapidly in a remarkable short time, which makes the MOSFET switching loss drop to a relatively low level. And the second step is expected to hold 250ns to get a relative long Miller time for improving EMI performance. This driver solution is a good balance of EMI performance and efficiency.

Overload Protection (OCP1/OCP2)

An integrated overload protection circuit provides a relatively constant power limit across over the whole line voltage. As shown in Figure 5, during the turn-on time, the Vaux drops to $-N^*VIN$, N being the turns ratio between the primary winding and the auxiliary winding and VIN being the input bulk voltage. The negative plateau voltage of the DEMAG pin has a proportion amplitude of the input voltage, so an integrated sensing circuit in AP3129 measures the input bulk voltage via the DEMAG pin. As the output power of system reaches a defined set limit, the corresponding V_{SENSE} should touch an internal overpower reference voltage (V_{TH_OCP1}). If the overload situation lasts continuously for 60ms, an overload protection circuit would be triggered and the system would enter into restart mode.

If the output power and the feedback voltage continue to rise up, AP3129 would authorize a transient peak load with a higher VSENSE threshold (VTH_OCP2) and a higher switching frequency (130kHz) for a period of 60ms. When the feedback voltage reaches up to the open-loop level (VCOMP_OPEN), which lasts more than 15ms, the device will enter an auto-recovery hiccup status. If the fault situation lasts less than set-time 15ms, the feedback will returns to its regulation level and resets the timer of peak-load-control circuit.

Line Compensation

A higher OCP current often occurs along with turn-off delay time of the MOSFET at high line voltage. To obtain a constant OCP current value with universal input voltage, an effective line compensation circuitry must be applied to the AP3129. The function block is illustrated in Figure 7. The current IDEMAG, which reflects line voltage, is scaled down and inversed to IL_OPP within the AP3129, this IL_OPP flows through the inner compensation resistor ROPP and an external filtering resistor RF. The final line compensation voltage is formed as:

$$V_{S} = V_{REF1} - I_{L_{opp}} * (R_{opp} + R_{F}), \quad (I_{L_{opp}} = \frac{V_{indc*Naux}}{N_{p*Rdem*K}})$$

Where, Vs is the sense voltage of Rs, "K" is the current proportional coefficient, and ROPP is decided by line voltage.

RDEM value is relevant with brown-in/out voltage, which is fixed (105kΩ recommended) to specific turn-ratio transformer system.

In a real system, the line compensation can be checked according to OCP1 under 115Vac line voltage condition. The corresponding parameters are set by $V_{REF1} = 0.525V$, K = 24, $R_{OPP} = 40k\Omega$, $R_F = 1k\Omega$

As is indicated from the above formula, when the V_{REF1} and R_{DEM} values are fixed, changing R_F is an alternative way to adjust the line compensation, especially at high line voltage. Once the R_F value is confirmed, it also needs to adjust the C_F simultaneously to offer enough RC time to filter the spike on the SENSE pin.

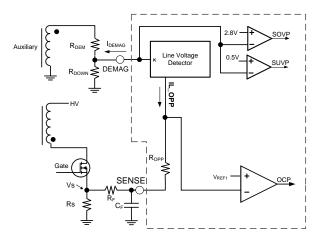


Figure 7. Line Compensation

Slope Compensation

The primary current is followed by the COMP voltage. When the primary peak current reaches the reference determined by V_{COMP}, the gate driver will be turned off. In order to avoid sub-harmonic oscillation, slope compensation is essential for peak-current mode when the duty cycle is above 50%. Even though the duty is below 50%, it is desirable to add a slope compensation to decrease the influence of external noise. The AP3129 offers an internal slope compensation signal (typically $33mV/\mu$ s) that can easily be summed up to the sensed current. Sub harmonic oscillations can thus be compensated. This allows the AP3129 to work with a wide input voltage.

Overtemperature Protection

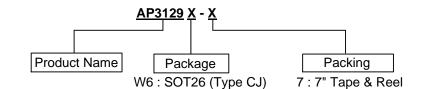
The AP3129 integrates an internal temperature protection to prevent permanent damage by overtemperature. If the junction temperature exceeds the temperature protection threshold of $+130^{\circ}$ C, the IC will trigger the internal OTP and stop switching. Meanwhile, if the VCC drops to VCC UVLO threshold V_{CC_UVLO}, the controller enters restart mode. A built-in hysteresis ensures that if the internal temperature drops to $+115^{\circ}$ C, the IC will recover operation.

Others System Protection

VBULK_OVP, FOCP, SSCP, VCC OVP, SCP

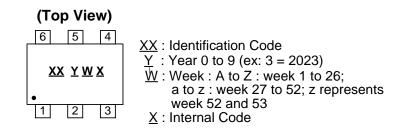
The AP3129 provides versatile protections to ensure the reliability of the power system. VBULK_OVP represents line voltage overvoltage protection. If the detected AC line voltage is higher than VBULK_OVP and sustains for 2.8s, the VBULK_OVP protection will be triggered.

FOCP (Fast overcurrent protection) is an ultra-fast short-current protection which is helpful to prevent catastrophic damage of the system when the secondary rectifier is shorted. The primary peak current will be monitored by the SENSE pin through a primary sense resistor. Whenever the sampled voltage reaches the threshold of VTH-FOCP for 6 switching cycles continuously, the FOCP will be activated to shut down the switching pulse.


SSCP (Sensor short-circuit protection) might be triggered when the SENSE pin is shorted to the ground. The SSCP module senses the voltage across the primary sense resistor with a several microsecond delay time after the rising edge of the primary GATE signal. This sensed signal is compared with V_{TH-SSCP}. If it is lower than V_{TH-SSCP} for 6 switching cycles, the SSCP will be triggered and the drive signal will be disabled. To prevent a false-trigger, the SSCP is valid only within the initial 25ms after startup.

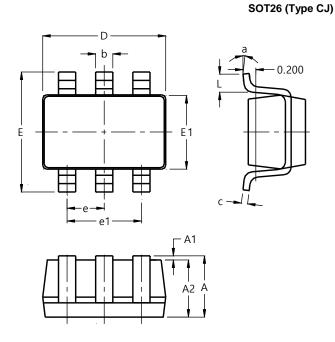
VCC overvoltage protection is used to prevent IC damage from overvoltage stress. All these protections described will restart the system when the V_{CC} voltage falls below UVLO.

If the power supply experiences a severe overloading situation or the output of the system is under a short-circuit test, the driving pulses will stop and V_{CC} will fall down as the auxiliary pulses are missing. When V_{CC} drops below V_{CC_UVLO}, the controller consumption is down to a few µA and V_{CC} slowly rises up again via resistive starting network. When V_{CC} reaches up to V_{CC_ON}, the controller purposely ignores the restart cycle and waits for another V_{CC} cycle. AP3129 naturally reaches a remarkable low input power by lowering the duty ratio in fault condition.

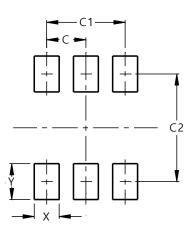

Ordering Information

Part Number	Package	Identification Code	Packing		
Part Number			Qty.	Carrier	
AP3129W6-7	SOT26 (Type CJ)	B4	3000	Tape & Reel	

Marking Information


Package Type: SOT26 (Type CJ)

Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

;	SOT26 (Type CJ)				
Dim	Min	Max	Тур		
Α	1.050	1.250			
A1	0.00	0.10			
A2	1.050	1.150			
b	0.300	0.500			
c	0.100	0.200			
D	2.820	3.020			
Е	2.650	2.950			
E1	1.500	1.700			
e	0	.950BS	С		
e1	1.800	2.000			
1	0.300	0.600			
а	0°	8°			
All	All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

Dim	e

Dimensions	Value
Dimensions	(in mm)
С	0.95
C1	1.90
C2	2.40
Х	0.60
Y	1.00

Mechanical Data

- Moisture Sensitivity: Level 3 per JESD22-A113
- Terminals: Finish Matte Tin Plated Leads, Solderable per JESD22-B102 Image: 3
- Weight: 0.016/0.017 grams (Approximate)

SOT26 (Type CJ)

IMPORTANT NOTICE

1. DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

products Diodes' are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com