The AP3031 is an inductor-based DC/DC boost converter designed to drive LED arrays. 1.4A switching current allows AP3031 to be used in different 7’ to 10’ LCD panel backlights (3*13 LED arrays typically).

A constant frequency 1MHz PWM control scheme is employed in this IC, which means tiny external components can be used. Specifically, 1mm tall 4.7μH inductor and 0.47μF output capacitor for the typical application is sufficient.

The over output voltage protection is equipped in AP3031, which protects the IC under open load condition. The AP3031 includes UVLO, soft-start, current limit and OTSD to protect the circuit.

The AP3031 is available in standard SOT-23-6, TSOT-23-6 and SOIC-8 packages.

- Up to 92% Efficiency ($V_{IN}=9V$, $I_{OUT}=260mA$)
- Up to 84% Efficiency ($V_{IN}=5V$, $I_{OUT}=260mA$)
- Fast 1MHz Switching Frequency
- Wide Input Voltage Range: 2.7V to 16V
- Low 200mV Feedback Voltage
- Output Over Voltage Protection
- Cycle by Cycle Current Limit: 1.4A
- Built-in Soft-start
- Built-in Standby Mode to Achieve High Frequency PWM Dimming
- Built-in Thermal Shutdown Function
- Under Voltage Lockout

Applications

- 7’ to 10’ LCD Panels
- Digital Photo Frame
- GPS Receiver
- EPC
- PDVD
Pin Configuration

![Pin Configuration Diagram](image)

Pin Description

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>SW</td>
</tr>
<tr>
<td>2</td>
<td>2, 3, 6</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>FB</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>CTRL</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>OV</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>V_{IN}</td>
</tr>
</tbody>
</table>
Functional Block Diagram

Figure 3. Functional Block Diagram of AP3031

Ordering Information

<table>
<thead>
<tr>
<th>Package</th>
<th>Temperature Range</th>
<th>Part Number</th>
<th>Marking ID</th>
<th>Packing Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-23-6</td>
<td>-40 to 85°C</td>
<td>AP3031KTR-G1</td>
<td>GEC</td>
<td>Tape & Reel</td>
</tr>
<tr>
<td>TSOT-23-6</td>
<td>-</td>
<td>AP3031KTTR-G1</td>
<td>L1E</td>
<td>Tape & Reel</td>
</tr>
<tr>
<td>SOIC-8</td>
<td>-</td>
<td>AP3031M-G1</td>
<td>3031M-G1</td>
<td>Tube</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>AP3031MTR-G1</td>
<td>3031M-G1</td>
<td>Tape & Reel</td>
</tr>
</tbody>
</table>

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.
Absolute Maximum Ratings (Note 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>SW Voltage</td>
<td>(V_{SW})</td>
<td>38</td>
<td>V</td>
</tr>
<tr>
<td>FB Voltage</td>
<td>(V_{FB})</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>CTRL Voltage</td>
<td>(V_{CTRL})</td>
<td>20</td>
<td>V</td>
</tr>
<tr>
<td>Thermal Resistance (Junction to Ambient, No Heat Sink)</td>
<td>(\theta_{JA})</td>
<td>65-120</td>
<td>°C/W</td>
</tr>
<tr>
<td>Operating Junction Temperature</td>
<td>(T_J)</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_{STG})</td>
<td>-65 to 150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (Soldering, 10sec)</td>
<td>(T_{LEAD})</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>ESD (Machine Model)</td>
<td></td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>ESD (Human Body Model)</td>
<td></td>
<td>4000</td>
<td>V</td>
</tr>
</tbody>
</table>

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature Range</td>
<td>(T_{OP})</td>
<td>-40</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>(V_{IN})</td>
<td>2.7</td>
<td>16</td>
<td>V</td>
</tr>
<tr>
<td>CTRL Voltage</td>
<td>(V_{CTRL})</td>
<td>16</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>
Electrical Characteristics

(V\textsubscript{IN}=5.0V, V\textsubscript{CTRL}=5.0V, T\textsubscript{A}=25\degree C, unless otherwise specified.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>V\textsubscript{IN}</td>
<td></td>
<td>2.7</td>
<td>16</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Feedback Voltage (Note 2)</td>
<td>V\textsubscript{FB}</td>
<td>I\textsubscript{OUT}=20mA, 3 LEDs, T\textsubscript{A}=-40\degree C to 85\degree C</td>
<td>188</td>
<td>200</td>
<td>212</td>
<td>mV</td>
</tr>
<tr>
<td>FB Pin Bias Current</td>
<td>I\textsubscript{FB}</td>
<td></td>
<td>35</td>
<td>100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>I\textsubscript{Q}</td>
<td>V\textsubscript{FB}=V\textsubscript{IN}, no switching</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>mA</td>
</tr>
<tr>
<td>Shutdown Quiescent Current</td>
<td>I\textsubscript{SHDN}</td>
<td>V\textsubscript{CTRL}=0V</td>
<td>20</td>
<td>50</td>
<td>80</td>
<td>\mu A</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>f</td>
<td></td>
<td>0.75</td>
<td>1</td>
<td>1.3</td>
<td>MHz</td>
</tr>
<tr>
<td>Maximum Duty Cycle</td>
<td>D\textsubscript{MAX}</td>
<td></td>
<td>90</td>
<td>93</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>Switch Current Limit (Note 3)</td>
<td>I\textsubscript{LIMIT}</td>
<td>D=60%</td>
<td>1.2</td>
<td>1.4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Switch V\textsubscript{CE} Saturation Voltage</td>
<td>V\textsubscript{CESAT}</td>
<td>I\textsubscript{SW}=0.6A</td>
<td>300</td>
<td></td>
<td></td>
<td>mV</td>
</tr>
<tr>
<td>Switch Leakage Current</td>
<td>V\textsubscript{SW}=16V</td>
<td></td>
<td>0.01</td>
<td>5</td>
<td></td>
<td>\mu A</td>
</tr>
<tr>
<td>CTRL Pin Voltage</td>
<td>V\textsubscript{CTRL}</td>
<td>Active high</td>
<td>1.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active low</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>CTRL Pin Bias Current</td>
<td>I\textsubscript{CTRL}</td>
<td></td>
<td>35</td>
<td>60</td>
<td>85</td>
<td>\mu A</td>
</tr>
<tr>
<td>OVP Voltage</td>
<td>V\textsubscript{OVP}</td>
<td></td>
<td>15.5</td>
<td>17.5</td>
<td>19.5</td>
<td>V</td>
</tr>
<tr>
<td>Soft-start Time</td>
<td>t\textsubscript{SS}</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td>\mu s</td>
</tr>
<tr>
<td>Standby Time</td>
<td>t\textsubscript{STB}</td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>Thermal Shutdown</td>
<td>T\textsubscript{OTSD}</td>
<td></td>
<td>155</td>
<td></td>
<td></td>
<td>\degree C</td>
</tr>
<tr>
<td>Thermal Resistance (Junction to Case)</td>
<td>\theta\textsubscript{JC}</td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td>\degree C/W</td>
</tr>
</tbody>
</table>

Note 2: The bold type specifications of full temperature range are guaranteed by design (GBD).
Note 3: The switch current limit is related to duty cycle. Please refer to Figure 15 for detail.
Typical Performance Characteristics

(WLED forward voltage (V_F)=3.2V at I_F=20mA, unless otherwise noted.)

![Figure 4. Efficiency vs. Output Current](image)

![Figure 5. Efficiency vs. Input Voltage](image)

![Figure 6. Minimum Operating Voltage vs. Temperature](image)

![Figure 7. Quiescent Current vs. Input Voltage](image)
Typical Performance Characteristics (Continued)

(WLED forward voltage \((V_F) = 3.2\text{V}\) at \(I_F = 20\text{mA}\), unless otherwise noted.)

Figure 8. Shutdown Quiescent Current vs. Input Voltage

Figure 9. CTRL Pin Voltage vs. Temperature

Figure 10. CTRL Pin Current vs. CTRL Pin Voltage

Figure 11. Feedback Voltage vs. Temperature
Typical Performance Characteristics (Continued)
(WLED forward voltage \(V_F\)=3.2V at \(I_F\)=20mA, unless otherwise noted.)

Figure 12. Frequency vs. Temperature

Figure 13. OVP Voltage vs. Temperature

Figure 14. Frequency vs. Input Voltage

Figure 15. Switch Current Limit vs. Duty Cycle
Typical Performance Characteristics (Continued)

(WLED forward voltage \(V_F=3.2\) V at \(I_F=20\) mA, unless otherwise noted.)

Figure 16. Switch Saturation Voltage vs. Switch Current

Figure 17. Case Temperature vs. Output Current

Switch Saturation Voltage (mV) vs. Switch Current (A)

Case Temperature (°C) vs. Output Current (mA)
Application Information

Operation
The AP3031 is a boost DC-DC converter which uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to Figure 3 and Figure 24.

At the start of each oscillator cycle, switch Q1 turns on. The switch current will increase linearly. The voltage on sense resistor is proportional to the switch current. The output of the current sense amplifier is added to a stabilizing ramp and the result is fed into the non-inversion input of the PWM comparator A2. When this voltage exceeds the output voltage level of the error amplifier A1, the switch is turned off.

It is clear that the voltage level at inversion input of A2 sets the peak current level to keep the output in regulation. This voltage level is the output signal of error amplifier A1, and is the amplified signal of the voltage difference between feedback voltage and reference voltage of 200mV. So, a constant output current can be provided by this operation mode.

LED Current Control
Refer to Figure 24, the LED current is controlled by the feedback resistor RSET. LEDs’ current accuracy is determined by the feedback voltage and resistor RSET, so the precise resistors are preferred. The resistance of RSET is in inverse proportion to the LED current since the feedback reference is fixed at 200mV. The relation for RSET and LED current (ILED) can be expressed as below:

\[
R_{\text{SET}} = \frac{200\text{mV}}{I_{\text{LED}}}
\]

Over Voltage Protection
The AP3031 has an internal open load protection circuit. When the LEDs are disconnected from circuit or fail open, the output voltage is clamped at about 17.5V. The AP3031 will switch at a low frequency, and minimize current to avoid input voltage drop.

Soft Start
The AP3031 has an internal soft start circuit to limit the inrush current during startup. If logic low time on CTRL pin is more than about 0.7ms and then enable the IC, the AP3031 will start smoothly to protect the supplier. The time of startup is controlled by internal soft-start capacitor. Details please refer to Figure 18.

Standby and Dimming
To avoid audio noise and achieve high frequency dimming, AP3031 is equipped with standby function. If logic low time on CTRL pin is less than about 0.7ms and then enable the IC, the AP3031 will hold on standby mode and start directly to achieve high frequency dimming. Details please refer to Figure 19.

Figure 18. Soft-start Waveform
VIN=5V, 3×13 LEDs, ILED=260mA

Figure 19. Standby Waveform
Two typical types of dimming control circuit are present as below. First, controlling CTRL Pin voltage to change operation state is a good choice. Second,
Application Information (Continued)
changing the feedback voltage to get appropriate duty and luminous intensity is also useful.

(1) Adding a Control Signal to CTRL Pin
Adding a PWM signal to CTRL pin directly, the AP3031 is turned on and off by this signal. When the PWM frequency is lower than 1kHz (Typ.), the IC works in the soft-start mode to dimming the light. On contrary, when the PWM frequency is higher than 1kHz (Typ.), the IC works in the standby mode: the converter ceaselessly switches off and directly starts to achieve light dimming. This standby function allows AP3031 to support high frequency dimming (up to 25kHz or higher) to avoid audio noise. More details please refer to Figure 20 and Figure 21.

Second, using a filtered PWM signal can do it. The filtered PWM signal can be considered as a varying and adjustable DC voltage, please refer to Figure 23.

(2) Changing the Effective Feedback Voltage
There are two popular methods to change the effective feedback voltage.

First, adding a constant DC voltage through a resistor divider to FB pin can control the dimming. Changing the DC voltage or resistor between the FB Pin and the DC voltage can get appropriate luminous intensity.
Typical Application

3×13 WLEDs

Booster for LNB Application (Note 4)
Booster for Portable Charger Application (Note 4)

Note 4: \(V_{\text{OUT}} = (1 + \frac{R_1}{R_2}) \times V_{\text{FB}} \)

Figure 24. Typical Application of AP3031
WHITE LED STEP-UP CONVERTER

AP3031

Mechanical Dimensions

SOT-23-6

Unit: mm (inch)

Dec. 2012 Rev. 1.6

BCD Semiconductor Manufacturing Limited
Mechanical Dimensions (Continued)

TSOT-23-6

Unit: mm (inch)

- Pin 1 Mark
- R0.100 (0.004)
- 0.250 (0.010)
- 0.250 (0.010) BSC
- GAUGE PLANE
- 0.370 (0.015) MIN
- 0.100 (0.004)
- 0.250 (0.010)
- 0.370 (0.015) MIN
- 0.100 (0.004)
- 0.100 (0.004) BSC
- 0.350 (0.014) 0.510 (0.020)
- 0.100 (0.004) 0.350 (0.014)
- 0.000 (0.000) 0.100 (0.004)
- 0.000 (0.000) 0.028 (0.001)
- 0.035 (0.001) 0.035 (0.001)
- 0.000 (0.000) 0.038 (0.001)
- 0.000 (0.000) 0.035 (0.001)
Note: Eject hole, oriented hole and mold mark is optional.