Over the last few years MOSFETs have become the device of choice in power switching applications. Whilst on-resistances have significantly reduced, they often require a driver stage to obtain the best performance, particularly when driven from low-voltage, low-current sources. This is where the bipolar transistors inherent advantages excel, as explained below.

Power MOSFETs are often presented as voltage driven devices and as such may be mistakenly expected to be driven from any signal source, irrespective of current capability. This may be an acceptable assumption when driving in DC or very low frequency switching applications where fast edge speeds are not important, but increasingly power MOSFETs are used in switching circuits of hundreds of kHz to 10MHz and in these circumstances the gate charge requirements are a major consideration. The charge necessary to fully enhance a power MOSFET derives from its Gate-Source and Gate-Drain capacitances and is delivered via an external resistor. The Gate voltage follows a characteristic RC time constant which (within EMI constraints) has to be short enough to traverse the linear region without incurring excessive switching losses in the power MOSFET.

The average Gate current during the switching event can be calculated thus:

\[I_G = \frac{Q}{t} \]

where:

- \(I_G \) is the average gate current
- \(Q \) is the total gate charge (\(Q_{GS} + Q_{GD} \))
- \(t \) is the switching transient time (\(t_{on} \) or \(t_{off} \))

For example a typical 100V, 35m\(\Omega \) DPAK MOSFET requires approximately 50nC. If it was required to switch in 20ns a Gate current of 2.5 Amps is required.

There are many potential solutions to provide gate drive for power MOSFETs, including dedicated IC drivers, standard logic ICs, discrete MOSFETs and bipolar transistors. The selection criteria for gate driving usually include:

- Switching speed (hence current capability)
- Cost
- Current gain
- Size

Bipolar transistors are eminently suitable for this function as they exhibit fast switching in linear mode, have high pulse current capability, high current density, hence small size and cost.

One of the most popular and cost effective drive circuits is a bipolar, non-inverting totem-pole type driver as shown in Figure 1.
If in the above example the power MOSFET was required to switch at a frequency of 1MHz and driven to $8V_{GS}$ the power dissipation in each driver transistor can be calculated, worst case (assuming $R_g = 0$), as approximately:

$$P_{D(npn)} = ((V_{CC} - V_G/2) \cdot Q \cdot f) + (V_{BE} \cdot I_B \cdot t \cdot f)$$

$$= ((12 - 4) \cdot 50E^{-9} \cdot 1E^6) + (0.8 \cdot 0.8E^{-3} \cdot 2E^{-8} \cdot 1E^6)$$

$$= 0.4W$$

$$P_{D(pnp)} = ((V_G/2) \cdot Q \cdot f) + (V_{BE} \cdot I_B \cdot t \cdot f)$$

$$= ((4 \cdot 50E^{-9} \cdot 1E^6) + (0.8 \cdot 0.8E^{-3} \cdot 2E^{-8} \cdot 1E^6)$$

$$= 0.2W$$

where:

- P_D is the power dissipation
- V_{CC} is the driver stage supply voltage (assumed in this case to be 12V)
- I_G is the average gate current
- t is the switching transient time (t_{on} or t_{off})
- f is the switching frequency
- $V_{BE(on)}$ is the forward base-emitter voltage
- I_B is the transistor base current (I_c/h_{FE})
With these power losses it is clear that bipolar transistors packaged in small surface mount packages are suitable, preferably co-packaged as complimentary dual devices. Table 1 presents some of the transistors and gate drivers available from Zetex, which are suitable for the gate drive application. Full details of Zetex high speed non-inverting, single MOSFET gate drivers available at www.zetex.com.

Gate drivers

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Vcc (V)</th>
<th>ISINK(PK) (A)</th>
<th>ISOURCE (A)</th>
<th>ISINK (A)</th>
<th>Prop. delay times (ns)</th>
<th>Switching time (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZXGD3001E6</td>
<td>SOT23-6</td>
<td>12</td>
<td>9</td>
<td>4.2</td>
<td>2.2</td>
<td><3</td>
<td><11</td>
</tr>
<tr>
<td>ZXGD3002E6</td>
<td>SOT23-6</td>
<td>20</td>
<td>9</td>
<td>2.2</td>
<td>2.0</td>
<td><1.6</td>
<td><10.8</td>
</tr>
<tr>
<td>ZXGD3003E6</td>
<td>SOT23-6</td>
<td>40</td>
<td>5</td>
<td>1.6</td>
<td>1.4</td>
<td><1.8</td>
<td><8.9</td>
</tr>
<tr>
<td>ZXGD3004E6</td>
<td>SOT23-6</td>
<td>40</td>
<td>8</td>
<td>1.9</td>
<td>1.9</td>
<td><1.1</td>
<td><13.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Package</th>
<th>BVCEO (V)</th>
<th>ICM (A)</th>
<th>hFE (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPN</td>
<td>SOT23F</td>
<td>12</td>
<td>10</td>
<td>500</td>
</tr>
<tr>
<td>PNP</td>
<td>SOT23F</td>
<td>12</td>
<td>8</td>
<td>500</td>
</tr>
<tr>
<td>PNP</td>
<td>SOT23</td>
<td>15</td>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>NPN</td>
<td>SOT23F</td>
<td>20</td>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>PNP</td>
<td>SOT23F</td>
<td>20</td>
<td>10</td>
<td>250</td>
</tr>
<tr>
<td>NPN</td>
<td>SOT23</td>
<td>20</td>
<td>8</td>
<td>300</td>
</tr>
<tr>
<td>PNP</td>
<td>SOT23F</td>
<td>20</td>
<td>6</td>
<td>300</td>
</tr>
<tr>
<td>NPN</td>
<td>SOT23F</td>
<td>45</td>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td>PNP</td>
<td>SOT23F</td>
<td>40</td>
<td>6</td>
<td>300</td>
</tr>
<tr>
<td>NPN</td>
<td>SOT23</td>
<td>40</td>
<td>6</td>
<td>300</td>
</tr>
<tr>
<td>PNP</td>
<td>SOT23</td>
<td>40</td>
<td>5</td>
<td>300</td>
</tr>
<tr>
<td>NPN</td>
<td>SOT23F</td>
<td>40</td>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>PNP</td>
<td>SOT23F</td>
<td>60</td>
<td>12</td>
<td>250</td>
</tr>
<tr>
<td>NPN</td>
<td>SOT23F</td>
<td>60</td>
<td>2</td>
<td>100</td>
</tr>
</tbody>
</table>

In conclusion, whilst MOSFETs have become the default choice of power switch for many designers bipolar transistors have many useful attributes which can be used beneficially in certain applications. One such application is power MOSFET gate driving, where the bipolar transistor's fast switching in linear mode, high pulse current capability, high current density, and small size and cost make them eminently suitable for this function.
Definitions

Product change
Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Applications disclaimer
The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.

Life support
Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:

A. Life support devices or systems are devices or systems which:
 1. are intended to implant into the body
 or
 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labelling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Reproduction
The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned.

Terms and Conditions
All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement. For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office.

Quality of product
Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer. To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of our regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork

Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

ESD (Electrostatic discharge)
Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices. The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

Green compliance
Zetex is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.

Product status key:
“Preview” Future device intended for production at some point. Samples may be available
“Active” Product status recommended for new designs
“Last time buy (LTB)” Device will be discontinued and last time buy period and delivery is in effect
“Not recommended for new designs” Device is still in production to support existing designs and production
“Obsolete” Production has been discontinued

Datasheet status key:
“Draft version” This term denotes a very early datasheet version and contains highly provisional information, which may change in any manner without notice.
“Provisional version” This term denotes a pre-release datasheet. It provides a clear indication of anticipated performance. However, changes to the test conditions and specifications may occur, at any time and without notice.
“Issue” This term denotes an issued datasheet containing finalized specifications. However, changes to specifications may occur, at any time and without notice.

Zetex sales offices

Europe
Zetex GmbH
Kustermann-park
Balanstraße 59
D-81541 München
Germany
Telephone: (49) 89 45 49 49 0
Fax: (49) 89 45 49 49 49
Europe.sales@zetex.com

Americas
Zetex Inc
700 Veterans Memorial Highway
Hauppauge, NY 11788
USA
Telephone: (1) 631 360 2222
Fax: (1) 631 360 8222
usa.sales@zetex.com

Asia Pacific
Zetex (Asia Ltd)
3701-04 Metroplaza Tower 1
Hing Fong Road, Kwai Fong
Hong Kong
Telephone: (852) 24250 484
Fax: (852) 26100 611
asia.sales@zetex.com

Corporate Headquarters
Zetex Semiconductors plc
Zetex Technology Park, Chadderton
Oldham, O9 9LL
United Kingdom

Oldham, O9 9LL
Zetex Technology Park, Chadderton
United Kingdom

© Zetex Semiconductors plc 2008
www.zetex.com