## AN48

## Getting more out of the ZXLD1350 - high output current

Ray Liu, Systems Engineer, Zetex Semiconductors

## Introduction

The ZXLD1350 is a continuous mode inductive step-down converter, designed for driving single or multiple series connected LEDs efficiently from a voltage source higher than the LED voltage. The device operates from an input supply between 7 V and 30 V and provides an externally adjustable output current of up to 350 mA . In order to obtain higher output current to drive LEDs with higher power, a high current externally connected output stage is required.

## 700mA driver for multiple 3W LEDs in series

This driver is designed to drive up to six $3 W$ LEDs in series which could deliver total output power of 15 W with an overall efficiency of around $90 \%$.


Figure 1 Schematic of 700mA driver

## AN48

## Part list

## Table 1

| Part ref. | Part no. | Remark |
| :--- | :--- | :--- |
| U1 | ZXLD1350 |  |
| Q1 | FCX619 |  |
| Q2 | FMMT619 |  |
| Q3 | FMMT619 |  |
| D1 | ZLLS1000 |  |
| D | 25.6 V Zener diode |  |
| L1 | $68 \mu \mathrm{H} 1 \mathrm{~A}$ |  |
| RS1 | $150 \mathrm{~m} \Omega$ |  |
| RS2 | $2.2 \Omega$ |  |
| R1 | $2.2 \mathrm{~K} \Omega$ |  |
| R2 | $470 \Omega$ | X5/7R or other low ESR cap |
| R3 | $15 \mathrm{~K} \Omega$ | Optional |
| C1 | $3.3 \mu \mathrm{~F} 50 \mathrm{~V}$ |  |
| C2 | $0.1 \mu \mathrm{~F}$ |  |

## Circuit description

The output driver consists of two NPN transistors (Q1 and Q2). Transistor Q 2 acts as a small signal inverter which inverts the original LX switch signal. The collector of Q 2 is connected to the base of transistor Q 1 which acts as the power output switch.

Transistor Q3 and Zener diode D2 form a simple regulator to supply a constant voltage to the driver stage. The voltage at emitter of Q 3 is around 5 V . This helps to provide a stable driving current to both Q 1 and Q 2 . The driving currents are around 2 mA and 9 mA respectively.
Total propagation delay is less than 200 ns against the LX pin. Both the rise time and the fall time of the output switch are less than 70 ns when input supply voltage is 30 V .

## Typical performance graphs



4 LEDs in series with total $\mathrm{V}_{\mathrm{F}}=14.9 \mathrm{~V}$


3 LEDs in series with total $\mathrm{V}_{\mathrm{F}}=11.1 \mathrm{~V}$



Output Current vs Input Voltage (5 LEDs)


Output Current vs Input Voltage (4 LEDs)


Output Current vs Input Voltage (3 LEDs)

## AN48

## Typical performance graphs (cont.)

2 LEDs in series with total $\mathrm{V}_{\mathrm{F}}=7.7 \mathrm{~V}$


1 LED in series with $V_{F}=3.8 \mathrm{~V}$



Output Current vs Input Voltage (2 LEDs)


Output Current vs Input Voltage (1 LED)

## A driver for supply voltage up to 16 V

This driver is a simplified version to the 700 mA driver described above. The driver is designed to drive up to 3 Luxeon ${ }^{\circledR}$ K2 LEDs in series which could deliver a total output power of 10 W with a maximum input supply voltage of 16 V .


Figure 2 Schematic of 1A driver

## Part List

## Table 2

| Part ref. | Part no. | Remark |
| :--- | :--- | :--- |
| U1 | ZXLD1350 |  |
| Q1 | ZXTN25020DFH |  |
| Q2 | ZXTN25020DFH |  |
| D1 | ZLLS2000 |  |
| L1 | $47 \mu \mathrm{H} 1.5 \mathrm{~A}$ |  |
| RS | $100 \mathrm{~m} \Omega$ |  |
| R1 | $4.7 \mathrm{~K} \Omega$ |  |
| R2 | $1.5 \mathrm{~K} \Omega$ |  |
| C1 | $4.7 \mu \mathrm{~F} 25 \mathrm{~V}$ | X5/7R or other low ESR cap |
| C2 | $0.1 \mu \mathrm{~F}$ | Optional |

## AN48

## Circuit description

This circuit is similar to the 700 mA driver described above. The output driver consists of two NPN transistors (O1 and Q2). Transistor Q2 acts as a small signal inverter which inverts the original LX switch signal. The collector of Q 2 is connected to the base of transistor Q 1 which act as the power output switch.

Unlike the 700 mA driver, the driving current to both Q 1 and Q 2 varies with the input supply voltage. Hence, the maximum input supply voltage is limited to 16 V . The driving current to Q 1 is between 5 mA and 10 mA with input supply voltage between 8 V and 16 V . Lowering the maximum supply voltage to 16 V enables us to use a lower voltage BJT with better switching performance.

Total propagation delay is less than 200 ns against the LX pin. Both the rise time and the fall time of the output switch are less than 60 ns when input supply voltage is 16 V .

## Typical performance graphs

2 LEDs in series with total $\mathrm{V}_{\mathrm{F}}=7.1 \mathrm{~V}$



1 LED in series with total $\mathrm{V}_{\mathrm{F}}=3.5 \mathrm{~V}$



Efficiency vs Input Voltage (1 LED)
Output Current vs Input Voltage (1 LED)

## Definitions

Product change
Zetex Semiconductors reserves the right to alter, without notice, specifications, design, price or conditions of supply of any product or service. Customers are solely responsible for obtaining the latest relevant information before placing orders.

## Applications disclaimer

The circuits in this design/application note are offered as design ideas. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by Zetex with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Zetex does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, opportunity or consequential loss in the use of these circuit applications, under any circumstances.
Life support
Zetex products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Zetex Semiconductors plc. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labelling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

## Reproduction

The product specifications contained in this publication are issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a epresentation relating to the products or services concerned.

## Terms and Conditions

All products are sold subjects to Zetex' terms and conditions of sale, and this disclaimer (save in the event of a conflict between the two when the terms of the contract shall prevail) according to region, supplied at the time of order acknowledgement.
For the latest information on technology, delivery terms and conditions and prices, please contact your nearest Zetex sales office.

## Quality of product

Zetex is an ISO 9001 and TS16949 certified semiconductor manufacturer.
To ensure quality of service and products we strongly advise the purchase of parts directly from Zetex Semiconductors or one of regionally authorized distributors. For a complete listing of authorized distributors please visit: www.zetex.com/salesnetwork
Zetex Semiconductors does not warrant or accept any liability whatsoever in respect of any parts purchased through unauthorized sales channels.

## ESD (Electrostatic discharge)

Semiconductor devices are susceptible to damage by ESD. Suitable precautions should be taken when handling and transporting devices.
The possible damage to devices depends on the circumstances of the handling and transporting, and the nature of the device. The extent of damage can vary from immediate functional or parametric malfunction to degradation of function or performance in use over time. Devices suspected of being affected should be replaced.

## Green compliance

Zetex Semiconductors is committed to environmental excellence in all aspects of its operations which includes meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.
All Zetex components are compliant with the RoHS directive, and through this it is supporting its customers in their compliance with WEEE and ELV directives.
Product status key:


[^0]
[^0]:    © 2007 Published by Zetex Semiconductors plc

