The DGD2136M is a highly integrated three phase gate driver IC used to drive N-Channel MOSFETs or IGBTs. Below (Figure 1) is an example application of using the DGD2136M with IGBTs to provide three Half-Bridge circuits used to drive a three-phase motor; typical motor applications are AC Induction motors, PMSMs, and BLDC motors. In this discussion, the important parameters needed to design in the DGD2136M are discussed. The main sections are bootstrap resistors, diodes, capacitor selection, gate driver component selection, and decoupling capacitor value.

Figure 1. DGD2136M application example
Bootstrap Component Selection

Bootstrap Resistor

Considering Figure 1, when the low side IGBT (Q4, Q5, or Q6) turns on, Vs pulls to GND and the bootstrap capacitor (C_{B1}, C_{B2}, or C_{B3}) is charged. When the high-side IGBT (Q1, Q2, or Q3) is turned on, V_s swings above Vcc and the charge on the bootstrap capacitor (C_{B}) provides current to drive the IC high-side gate driver. The first charge of C_{B} from Vcc through the bootstrap resistor (R_{BS1}, R_{BS2}, or R_{BS3}) and bootstrap diode (D_{BS1}, D_{BS2}, or D_{BS3}) occurs when power is first applied and the Low Side turns on the first time. At this time the charge current is the largest as typically C_{B} is not discharged fully at each cycle.

A bootstrap resistor (R_{BS}) is included in the bootstrap circuit to limit the inrush current that charges C_{B} when Vs pulls below Vcc. This inrush current is largest with the first charge. Limiting inrush current is desirable to limit noise spike on Vs and COM, potentially causing shoot-through. The amplitude and length of time of the inrush current is determined mostly by the component value of R_{BS} and C_{BS} as well as Vcc level. The aim in resistor selection for the application is to slow down the inrush current but have minimal effect on the RC time constant of charging C_{BS}.

Typically, values for R_{BS} are 3Ω to 10Ω, enough to dampen the inrush current but have little effect on the V_{BS} turn on. Figures 2-5 illustrate the effect of different R_{BS} values.

![Figure 2: Bootstrap Peak inrush current ≈3A with RBS=3Ω, CBS=2.2µF](image1)

![Figure 3: Bootstrap Peak inrush current ≈1.2A with RBS=10Ω, CBS=2.2µF](image2)

![Figure 4: VBS Rise Time (11.8µs) with RBS=3Ω, CBS=2.2µF](image3)

![Figure 5: VBS Rise Time (20.5µs) with RBS=10Ω, CBS=2.2µF](image4)
Bootstrap Diode

The chosen bootstrap diode (DBS) should be rated higher than the maximum rail voltage since the diode must be able to block the full rail voltage and any spikes seen at the Vs node. The diode's current rating is simply the product of total charge (QT) required by the HVIC (High Voltage Integrated Circuit) and the switching frequency. An ultrafast recovery diode is recommended to minimize any delay of charging the CBS Cap. A 1A ultrafast recovery diode is typical for DGD2136M applications.

Bootstrap Capacitor

The initial step in determining the value of the bootstrap capacitor is to determine the minimum voltage drop (ΔVBs) that can be guaranteed when the high-side device is turned on. In other words, the minimum gate-source voltage (VGS,min) must be greater than the UVLO of the high-side circuit, specifically VBSUV-level. Therefore, if VGS,min is the minimum gate-source voltage such that:

VGS,min > VBSUV.

Then:

ΔVBs = Vcc - Vl - VGS,min - VX

Where:
- Vcc is the supply voltage to the DGD2136M
- Vl is the voltage drop across the bootstrap diode (DBS)
- VX is the voltage drop across the MOSFET or IGBT

VX is calculated as the current seen across low-side MOSFET multiplied by its RDS_ON and is simply VCE_ON at the specific output current if an IGBT were used instead.

In addition to the voltage drops across these components, other factors that cause VBs to drop are leakages, charge required to turn on the power devices, and duration of the high-side on time. The total charge (QT) required by the gate driver then equals:

QT = QG + QLS + [IK,N] * TH_ON

Where:
- QG = gate charge of power device
- QLS = level shift charge required per cycle
- TH_ON = high-side on time
- IK,N = sum of all leakages that include:
 - IGS/IGES: Gate-source leakage of the power device
 - IK_DB: Bootstrap diode leakage
 - IK_IC: Offset supply leakage of HVIC
 - IQ_BS: Quiescent current for high side supply
 - IK_DC: Bootstrap capacitor leakage

Bootstrap capacitor leakage (IK,CBS) only applies to electrolytic types. Therefore, it is best not to use an electrolytic capacitor. Thus, bootstrap capacitor leakages will not be included in the calculations.

QLS is not listed in the datasheet; depending on the process technology, it could range anywhere from 3-20nC for 500V to 1200V process respectively. Assuming a value of 10nC for the 600V process should be sufficient with added margin.

From the basic equation, then the minimum bootstrap capacitor is calculated as:

CBS,min ≥ QT / ΔVBs

Example using IGBT, IRGB4066

HVIC=DGD2136M
Vcc = 15V
Iout = 40A
TH_ON = 50µs
VCE_MAX = ~2.0V
QG = 225nC
IGS/IGES = 200nA
IK,DB = 100µA
IK,IC = 10µA
IQ,BS = 130µA
From equations 1, 2 and 3:

\[\Delta V_{BS} = 15V - 1.0V - 10V - (2V) = 2V \]

\[Q_T = Q_2 + Q_{LS} + (I_{Lk,n} \cdot T_{H_{ON}}) \]

\[= 225nC + 10nC + 19nC \]

\[= 254nC \]

Thus \(C_{BS\ min} = \frac{254nC}{2V} = 127nF \).

The bootstrap capacitor calculated in the above example is the minimal value required to supply the needed charge. It is recommended that a margin of 2-3 times the calculated value be used. In addition, if the added margin is significantly small, such that it is lower than 0.47\(\mu \)F, the minimal value should be brought up to this value. Utilizing values lower than this could result in overcharging of the bootstrap capacitor especially during –VS transients.

Typically for motor driver applications \(C_{BS} = 1\mu F \) to 10\(\mu F \) are used; also, it is recommended to use low ESR ceramic capacitors as close to the \(V_B \) and \(V_S \) pin as possible (see PCB layout suggestions section).

Gate Resistor Component Selection

The most crucial time in the gate drive is the turn on and turn off of the MOSFET, and to perform this function quickly, but with minimal noise and ringing is key. Too fast a rise/fall time can cause unnecessary ringing and poor EMI; too slow a rise/fall time will increase switching losses in the MOSFET.

![Figure 6. Phase1 Gate Drive Components for DGD2136M](image)

Considering the phase 1 gate driver components for DGD2136M in Figure 6, with the careful selection of \(R_{G1} \) and \(R_{RG1} \), it is possible to selectively control the rise time and fall time of the gate drive. For turn on, all current will go from the IC through \(R_{G1} \) and charge the IGBT gate capacitor, hence increasing or decreasing \(R_{G1} \) will increase or decrease rise time in the application. With the addition of \(D_{RG1} \), the fall time can be separately controlled as the turn off current flows from the MOSFET gate capacitor, through \(R_{RG1} \) and \(D_{RG1} \) to the driver in the IC to VS. So, increasing or decreasing \(R_{RG1} \) will increase or decrease the fall time. Sometimes finer control is not needed and only \(R_{G1} \) is used.

Increasing turn on and turn off has the effect of limiting ringing and noise due to parasitic inductances, hence with a noisy environment, it may be necessary to increase the gate resistors. Gate component selection is a compromise of faster rise time with more ringing, and a poorer EMI but better efficiency, and a slower rise time with better EMI, better noise performance but poorer efficiency. The exact value depends on the parameters of the application. Generally, for motors the switching speed is slower, and the application has more inherent noise, higher values are recommended, for example \(R_G = 20\Omega - 100\Omega \).
Fault timing Circuit

The DGD2136M contains an overcurrent protection (OCP) circuit that shuts off all the outputs when ITRIP goes above 500mV (this will be current sense resistor value X maximum current), see Figure 7. When ITRIP is above 500mV, the OCP circuit pulls the FO* pin to GND.

![Figure 7. DGD2136M OCP Circuit](image)

External to the IC (see Figure 8), the FO* line is pulled up to 5V (often from the control board) by RFO*; 5k\(\Omega\) is a typical value for this pullup resistor. After FO* is pulled low and there is no longer a fault (ITRIP is below 500mV), there is a fault clear time determined by the RC constant of R\(_{CIN}\) and C\(_{CIN}\) values (see Figure 8). This is a system design decision, but an example and typical value is given in the datasheet:

<table>
<thead>
<tr>
<th>Fault Clear Time</th>
<th>I(_{PTCLR})</th>
<th>1.8</th>
<th>ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>C({CIN}) = 1nF, R({CIN}) = 2M(\Omega)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Figure 8. DGD2126M Fault timing circuit](image)
Current Sense Filter

Even during normal operation in a half-bridge there is significant noise on the current sense line. Hence an RC current sense filter is suggested to filter out some of the higher frequency noise.

The cut-off frequency of the low pass filter is given by:

\[f_c = \frac{1}{2\pi R_{CS} C_{CS}} \]

For example: if \(R_{CS} = 1k\Omega \) and \(C_{CS} = 1nF \), the \(f_c = 159kHz \), filtering out to about 6\(\mu s \) pulse.

![Figure 9. Current sense filter](image)

Decoupling Capacitor Selection

For optimal operation, Vcc decoupling is crucial for all gate driver ICs including the DGD2136M. With poor decoupling, Vcc can drop when switching and for greater Vcc drop the IC can go into UVLO. In the configuration shown in Figure 1, with \(V_{SS} \) and COM connected close to the IC (at GND), two decoupling capacitors are recommended \(C_{V1} \) and \(C_{V2} \) (see Figure 10), both connected from Vcc-GND. \(C_{V1} \) can be a larger electrolytic, for example 47\(\mu F \), 50V and does not need to be right next to the IC. But \(C_{V2} \) should be a low ESR ceramic capacitor placed close to the Vcc pin. This component provides stability when Vcc is quickly pulled down with load; typical values are 0.1\(\mu F \) to 1\(\mu F \). If \(V_{SS} \) and COM are not shorted at the IC and may be different potential, it is suggested to have one ceramic capacitor from Vcc-GND and another capacitor from Vcc-\(V_{SS} \).

![Figure 10. Decoupling capacitors on the DGD2136M](image)

Matching Gate Driver with MOSFET or IGBT

IC drive current and MOSFET/IGBT gate charge

Gate Driver ICs are defined by their output drive current, their ability to source current to the gate of the MOSFET/IGBT at turn on and to sink current from the gate of the MOSFET/IGBT at turn off. For the DGD2136M the drive current is \(I_{O+} = 200mA \) typical and \(I_{O-} = 350mA \) typical.

For a given MOSFET/IGBT with the known drive current of the DGD2136M, you can calculate how long it will take to turn on/off the MOSFET/IGBT with the equation:

\[t = \frac{Q_g}{I} \]

\(Q_g \) = total charge of the MOSFET/IGBT as provided by the datasheet
\(I \) = sink/source capability of the gate driver IC
\(t \) = calculated rise/fall time with the given charge and drive current
For example with Diodes’ DGTD65T15H2TF, 650V IGBT, Qg = 61nC; and with the DGD2136M I_o+/I_o-, tr = 305ns and tf = 174ns. These are estimates as the total charge given in the datasheet may not be the same conditions in the application. Also, an addition of a gate resistor will increase the tr and tf.

MOSFET/IGBT input capacitance ratio

In a Half-Bridge circuit (see Figure 11), when the Low Side turns on, V_S swings low at a rate of dV_S/dt. Depending on the dV_S/dt of the system, and a ratio of Cies/ Cres of the IGBT, there can be an inadvertent turning on the high-side IGBT during this transition. If this occurs, shoot-through will happen, possibly damaging the IGBT and definitely causing inefficiency. Often this is the reason for short, unexplained shoot-through. If this is the case, another IGBT with larger Cies/ Cres should be chosen, or a capacitor (for example 1nF) can be added between the gate and emitter of the IGBTs.

![Figure 11. Half-Bridge with high side IGBT equivalent capacitors](image)

Minimum Pulse Requirement

For superior noise performance, the DGD2136M has an input filtering time of 250ns. Also, the DGD2136M has a typical propagation delay of 330ns. With the prop delay of the DGD2136M, delay time from gate resistors, and rise/fall from the MOSFETs/IGBTs, for optimal operation, it is suggested to provide a minimum pulse width at the input to the IC from the MCU. As a rule of thumb, this minimum pulse should be 2 x deadtime or 660ns.
PCB layout suggestions

Layout plays an important role in minimizing unwanted noise coupling, unpredicted glitches, and abnormal operation which can arise from poor layout. Figure 12 shows a single phase half-bridge schematic with parasitic inductances in the high current path (L\textsubscript{P1}, L\textsubscript{P2}, L\textsubscript{P3}, L\textsubscript{P4}) which would be caused by inductance in the metal of the trace. Considering Figure 12, the length of the tracks in red should be minimized, and the bootstrap capacitor (C\textsubscript{B}) and decoupling capacitor (C\textsubscript{D}) should be placed as close to the IC as possible as well as using low ESR ceramic capacitors. Finally, the gate resistors (R\textsubscript{GH} and R\textsubscript{GL}) and the sense resistor (R\textsubscript{S}) should be surface mount devices. These suggestions will reduce the parasitics due to the PCB traces.

![Figure 12. Layout suggestions for single phase of three phase system](image)

DGD2136M in three phase half-bridge PCB layout example (below)

![Layout of the schematic shown in Figure 1, DGD2136M in SOIC28, IGBTs in TO220 Packages](image)
IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com