

AN1172 DGD0280 Application Note

The DGD0280 is a high-speed, low-side, single gate driver with integrated LDO, capable of source current of 2.5A and sink current of 2.8A. Low-side gate drivers will optimally charge the gate of MOSFETs or IGBTs in a ground-based configuration. Below, (Figure 1) is an example application using the DGD0280 with a MOSFET in a power tool application; the aim of the DGD0280 is to optimally drive Q1 by quickly providing a charge on the gate when OUT becomes high. Typical PWM from the MCU control is 3.3V (with MCU supply provided by the DGD0280) and the DGD0280 converts the 3.3V PWM to the amplitude of Bat. Because of its high-speed performance, the DGD0280 is also well suited for low-voltage power supplies. In this application note, the important parameters needed to design in the DGD0280 are discussed. These include: gate driver component selection, decoupling capacitor discussion, and PCB layout suggestions.

Gate Component Selection

The most crucial time in the gate drive is the turn on and turn off of the MOSFET or IGBT; the aim is to perform this function quickly, but with minimal noise and ringing when the MOSFET turns on. Too fast a rise/fall time can cause unnecessary ringing and poor EMI, and too slow a rise/fall time will increase switching losses in the MOSFET.

Figure 2. Gate drive components for DGD0280

Considering the gate driver components for the DGD0280 in Figure 2, with the careful selection of R_G and R_{RG} , it is possible to selectively control the rise time and fall time of the gate drive to the MOSFET. For turn on, all current will go from the IC through R_G and charge the MOSFET gate capacitance, hence increasing or decreasing R_G will increase or decrease rise time in the application. With the addition of D_{RG} , the fall time can be separately controlled as the turn off current flows from the MOSFET gate capacitance, through R_{RG} and D_{RG} to the driver in the IC to GND. So, increasing or decreasing R_{RG} will increase or decrease the fall time. Sometimes finer control is not needed and only R_G needs to be used.

Increasing turn on and turn off has the effect of limiting ringing and noise due to parasitic inductances, hence with a noisy or excessively ringing environment, it may be necessary to increase the gate resistors. Gate component selection is a compromise of faster rise time with more ringing, and a poorer EMI but better efficiency, contrasted with a slower rise time with better EMI, better noise performance but poorer efficiency. The exact value depends on the parameters of the application and system requirements. R_G values are typically between 5 Ω and 100 Ω , optimal value decided by MOSFET gate capacitance and drive current of gate driver. R_{RG} values are typically between 3 Ω and 50 Ω , optimal value decided by MOSFET gate capacitance and drive current of gate driver.

The gate to source capacitor C_G is also used to minimize ringing and noise and to provide overall stability if the gate driver and MOSFET are not the optimal match. Most systems will not need C_G (increasing the gate resistor can decrease ringing and provide system stability) but if required, then $C_G = 1$ nF is a good typical value.

V_{CC} Decoupling Capacitor

For optimal operation, V_{CC} decoupling is crucial for all gate driver ICs. With poor decoupling, larger V_{CC} transients will occur at the IC when switching.

As shown in Figure 1, C_V is the decoupling capacitor. C_V is used to decouple faster edge changes to V_{CC} and should be a low ESR ceramic capacitor placed close to the V_{CC} pin (see Layout section). This component provides stability when V_{CC} is quickly pulled down with load from the IC; typical values are 0.1μ F to 1μ F.

Internal LDO

To decrease the BOM and simplify the system design, the DGD0280 has an internal LDO to provide 3.3V (to 1% accuracy) to MCU and other associated circuits. Maximum suggested current draw is 15mA. During normal operation it is recommended to add a 0.1μ F ceramic capacitor, close to the device between 3V3 and GND (C_L in Figure 1).

www.diodes.com

Inputs and outputs

There is only a single input (IN) for the DGD0280 and it is a very high impedance input with a pull-down resistor. The pull-down resistor on IN has an approximate value of $400k\Omega$ (see Figure 3).

Figure 3. Input logic and functional block diagram for the DGD0280

Matching Gate Driver with MOSFET or IGBT

IC drive current and MOSFET/IGBT gate charge

Gate Driver ICs are defined by their output drive current, its ability to source current to the gate of the MOSFET/IGBT at turn on and to sink current from the gate of the MOSFET/IGBT at turn off. For the DGD0280 the source and sink drive current is I_0 + = 2.5A and IO- = 2.8A.

For a given MOSFET/IGBT, with the known drive current of the DGD0280, you can estimate how long it will take to turn on/off the MOSFET/IGBT with the equation:

 $t = Q_g / I$

 $\mathsf{Q}_\mathsf{g} = \mathsf{total} \ \mathsf{charge} \ \mathsf{of} \ \mathsf{the} \ \mathsf{MOSFET}/\mathsf{IGBT} \ \mathsf{as} \ \mathsf{provided} \ \mathsf{by} \ \mathsf{the} \ \mathsf{datasheet}$

I = sink/source capability of the gate driver IC

t = calculated rise/fall time with the given charge and drive current

For example, consider Diodes' DMN3009SK3, 30V, 20A, $Q_g = 42nC$; and the DGD0280 $I_{0+} = 2.5A$ then $t_r = 17ns$ and for $I_{0-} = 2.8A$, $t_f = 15ns$. These are estimates as the total charge given in the datasheet may not be the same conditions in the application. Also an addition of a gate resistor will increase the t_r and t_r .

PCB layout suggestions

Layout also plays a considerable role since unwanted noise coupling, unpredicted glitches and abnormal operation could arise due to poor layout of the associated components. Figure 4 shows the DGD0280 with parasitic inductances in the high current path (L_{P1} , L_{P2}) which would be caused by inductance in the metal trace. Considering Figure 4, the length of the tracks in red should be minimized, and the decoupling capacitor (C_V) should be placed as close to the IC as possible as well as using low ESR ceramic capacitors. And finally, the gate resistor (R_G) should be a surface mount device. These suggestions will reduce the parasitics due to the PCB traces.

Figure 4. Layout suggestions for DGD0280, tracks in red should be as short as possible

Figure 5. Schematic for layout example of DGD0280 shown in Figure 6.

Figure 6. Layout for DGD0280 of the schematic shown in Figure 5.

AN1172 – Rev 1 Application Note 4 of 4

January 2022 © Diodes Incorporated

www.diodes.com