Hardware Implementation Guide for the PI7C8148
By Jay Jung

Introduction
The PCI interface was originally created for the personal computing industry. It has used to be adapted by system designers who incorporate it into Datacom, Telecom, PCs, Servers, and many other systems. Currently the PCI interface is generally used as an expansion bus to add PCI slots on the system motherboards that have wide ranging applications. It is also used in add-in cards since most systems have PCI slots available to insert the PCI add-in cards. The PI7C8148 PCI-to-PCI Bridge is a 32-bit, 66 MHz capable chip that can be used either within an add-in card or on a motherboard.

Schematic and Layout Guidelines
This section has guidelines for hardware implementation of the Pericom PI7C8148 PCI-to-PCI Bridge (8148) in an add-in card or system motherboard.

Example of 4-Port Ethernet Network Card

Power
The 8148 bridge supports both 3.3V and 5V environment signals. The chip core is operating with 3.3V VDD and signaling on either bus is at the voltage level of the respective P_VIO (pin P09) or S_VIO (pin N05) inputs.

Clock Frequency
Regardless of the status of M66EN (PCI connector signal 49B) at either PCI bus, the input clock frequency at signal P_CLK will always be the frequency used for S_CLKOUT[4:0]. A motherboard with PCI slots might have any speed device inserted, but an add-in card usually has embedded devices. Therefore an add-in card with appropriate 66 MHz PCI capable devices could be designed to 66 MHz tolerances, and function in both 33 and 66 MHz environments using the low cost PI7C8148 rather than higher pin count/cost alternative model bridges.

Miscellaneous Signal Connections
For PI7C8148:

<table>
<thead>
<tr>
<th>Pin name</th>
<th>location</th>
<th>Requested value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_SERR#</td>
<td>Pin C2</td>
<td>Pull high to VDD through 5.1K ohm resistor</td>
</tr>
<tr>
<td>S_PERR#</td>
<td>Pin C1</td>
<td>Pull up</td>
</tr>
<tr>
<td>S_STOP#</td>
<td>Pin D3</td>
<td>Pull up</td>
</tr>
<tr>
<td>S_DEVSEL#</td>
<td>Pin D2</td>
<td>Pull up</td>
</tr>
<tr>
<td>S_TRDY#</td>
<td>Pin D1</td>
<td>Pull up</td>
</tr>
<tr>
<td>S_IRDY#</td>
<td>Pin E3</td>
<td>Pull up</td>
</tr>
<tr>
<td>S_FRAME#</td>
<td>Pin E2</td>
<td>Pull up</td>
</tr>
<tr>
<td>SCAN_TM#</td>
<td>Pin P7</td>
<td>Pull up</td>
</tr>
<tr>
<td>SCAN_EN</td>
<td>Pin N7</td>
<td>Can be NC (no connect)</td>
</tr>
<tr>
<td>BPCCE</td>
<td>Pin A1</td>
<td>Tie low if not using power management; pull up to enable power management</td>
</tr>
</tbody>
</table>

For each PCI slot:

<table>
<thead>
<tr>
<th>Pin name</th>
<th>location</th>
<th>Requested value</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQ#</td>
<td>Pull high to VDD through external resistor</td>
<td></td>
</tr>
<tr>
<td>ACK64#</td>
<td>Pull up</td>
<td></td>
</tr>
<tr>
<td>REQ64#</td>
<td>Pull up</td>
<td></td>
</tr>
<tr>
<td>SMBLCK</td>
<td>(A40)</td>
<td>Pull up</td>
</tr>
<tr>
<td>SMBDAT</td>
<td>(A41)</td>
<td>Pull up</td>
</tr>
</tbody>
</table>

Output Clocks
Each secondary clock output is limited to one load. One secondary clock output is used to feedback into S_CLKIN, with the remaining 4 clocks driving embedded PCI devices/slots. All secondary clock traces including feedback should have the same length so as to deliver the clock at the same time at their respective destinations. This means that the furthest secondary bus device from the bridge governs the effective secondary bus clock trace lengths. Unused clock outputs can be disabled by writing to the bridge configuration register at offset 68h, or terminated electrically.

Clock lines are best terminated with a series termination resistor. The value of resistor is depends on the impedance of your transmission lines. Our 65 ohm trace impedance reference board uses 22 ohm resistors placed close to the bridge; some designs use as little as 10 ohms and others as much as 33 ohms, with 50 ohm to 75 ohm trace impedance’s could be used from each PCI connector then routed around our bridge out to the primary PCI bus with some pull up resistor. There is no clock programming circuit required by hardware; normally all secondary clock outputs are enabled. Likewise there are no GPIO pins, JTAG scan port.

3.3Vaux: This power source, if implemented on your design, should be applied from the primary PCI connector around the bridge to the secondary bus connectors.
Power Decoupling
In order to reduce noise at \(V_{DD} \) or ground from impacting the bridge, place 4 sets of decoupling capacitors top and bottom as close as possible to each corner of the bridge IC. These should be \{0.1 \mu F, 0.01 \mu F, 0.001 \mu F\} on bottom side and be \{10 \mu F, 0.1 \mu F, 0.01 \mu F, 0.001 \mu F\} top side. These are in addition to further decoupling at the PCI primary interface and secondary slots as needed per PCI specification 2.2, section 4.4.2.1 “power decoupling”.

For add-in cards, please add the following decoupling capacitors at the edge connector, for 3.3V and 5V pins, with values \{0.1 \mu F, 0.01 \mu F, 0.001 \mu F\}. Use high quality, low ESR surface mounted ceramic capacitors.

PCI Interrupts
PCI interrupts are processed at the motherboard south bridge, which sits on the primary PCI bus (thus upstream from the 8148). Thus there aren’t signals at the bridge for interrupt processing; rather during layout the board designer routes the INTA#, INTB#, INTC#, and INTD# signals directly to the corresponding signals on the primary bus.

When the secondary bus is to have PCI connectors, the pin position of the PCI INTx# signals rotate from slot to slot, per PCI specification 2.2, section 2.2.6 (page 14).

BPCCE: bus power-clock control enable (pin 159). Pull HIGH to enable power management, and tie LOW for operation without power management. The one thing you should NOT do is let this or any other INPUT signal float.

Additional PCI signals per PCI specification 2.2, section 2.2.7: PRSNT[1:2] Normally these are pulled high with a decoupling capacitor to ground on the secondary bus.

PME# Power Management Event signal, an optional signal. The 8148 doesn’t have a PME# pin, so if your design plans to use power management events, bus the PME# signal on the secondary bus around the bridge and out the primary bus edge connector.

Hot-Swap
Compact PCI (cPCI) Hot Swap (PICMG 2.1, R1.0) defines a process for installing and removing PCI boards form a Compact PCI system without shutting down system power.

The PI7C8148 is Hot Swap Friendly silicon that supports all the cPCI Hot Swap Capable features and adds support for Software Connection Control. Being Hot Swap Friendly, the bridge supports the following:

- Compliance with PCI Specification 2.2
- Tolerates VCC from Early Power
- Asynchronous Reset
- Tolerates Pre-charge Voltage
- I/O Buffers Meet Modified V/I Requirements
- Limited I/O Pin Leakage at Pre-charge Voltage

The bridge provides three pins to support hot swap: ENUM#, EJECT and LOO. The ENUM# output indicates to the system that a hot swap event occurred or that an extraction is about to occur. The EJECT senses the status of eject switch on Compact PCI board. The LOO output lights an LED to signal insertion- and removal-ready status.

Hot-Swapping 3 Pin Definitions:
ENUM initially needs to be tied high, and the usage will be three pin solutions.

Insertion:
1. After reset, the 8148 will wait for the EJECT pin to be asserted to indicate the successful insertion.
2. If EJECT is asserted, the 8148 will signal the host by asserting the ENUM# and then offset 92h will be 80h.
3. The host can set bit [7] of offset 92h to acknowledge this insertion.
4. Offset 92h will be 00h and the ENUM# will be deasserted after the 8148 enters normal operation.

Extraction:
1. When EJECT is pulled low, the state is entered to the extraction state.
2. The 8148 will signal the host by asserting ENUM#, and offset 92h will be 40h.
3. The host can set bit [6] of offset 92h to acknowledge this extraction.
4. Offset 92h will be 00h and ENUM# will be deasserted after the 8148 enters normal operation.

During insertion/extraction phase for three pin definitions, the LOO pin is the process indicator. The software can set/reset bit [3] or offset 92h to represent the start/end state transition.

Hot-Swapping 2 pin Definitions
EJECT is tied to ground externally, and the usage will be two pin solutions.

Insertion:
1. After reset, the 8148 will wait for the LOO pin to be zero to indicate the successful insertion.
2. It will signal the host by asserting ENUM#, and offset 92h will be 80h.
3. The host can set bit [7] of offset 92h to acknowledge this insertion.
4. Offset 92h will be 00h and ENUM# will be deasserted after the 8148 enters normal operation.

Extraction:
1. When LOO is pulled high, the state will be entered into the extraction state.
2. The 8148 will signal the host by asserting ENUM#, and offset 92h will be 40h.
3. The host can set bit [6] of offset 92h to acknowledge this extraction.
4. Offset 92h will be 00h and ENUM# will be deasserted after the 8148 enters normal operation.

These pins (ENUM#, EJECT and LOO) can be left floating if the hot swap function is unused.

EEPROM
The bridge supports the interface to access a serial EEPROM such as ISSI IS24C02 and other compatible parts. This feature may be used to initialize the configuration of the 8148.

For application usage, we recommend that EEPD be pulled high externally. The pin can also be unconnected if the EEPROM is not used.
Clock Management
The bridge supports the PCI clock run protocol defined in the PCI Mobile Design Guide 1.0. For 8148, the primary clock running protocol is enabled by bit [27] offset 6Ch, and the secondary clock run protocol is enabled by bit [25] offset 6Ch.

Followings are clock continuation – Minimum Repetition timing for 8148’s primary and secondary CLKRUN#.

Figure 1: Tcrrep for P_CLKRUN#

Figure 2: Tcrrep for S_CLKRUN#

The P_CLKRUN# and S_CLKRUN# need to be pulled low externally when the clock power management is not needed.

Four layer board recommendation
For 5V or mixed signaling environments, we recommend a 6-layer board arranged as follows:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>Route clock and other critical signals on top</td>
</tr>
<tr>
<td>Internal plane 1</td>
<td>Ground</td>
</tr>
<tr>
<td>Internal plane 2</td>
<td>3.3V, 5V, 12V, -12V</td>
</tr>
<tr>
<td>Bottom</td>
<td>Signal connections</td>
</tr>
</tbody>
</table>

Do NOT route high frequency bus signals under the bridge.

Signal layers should be separated by ground planes, and no signals routed between ground and power planes. Use FR-4 material for board fabrication.

General layout guidelines:
1. Limit your trace lengths. Longer traces display more resistance and inductance and introduce more delays. It also limits the bandwidth that varies inversely with the square of trace length.
2. Use higher impedance traces. Raising the impedance will also increase the bandwidth. Per PCI specification 2.2, section 4.4.3.3 trace impedance should be controlled to be within 60 to 100 ohms range.
3. Do not use any clock signal loops. Keep clock lines straight when possible.
4. For related clock signals that have skew specifications, match the clock trace lengths.
5. Do not route signals in the ground and VCC planes.
6. Do not route signals close to the edge of the PCB board.
7. Make sure there is a solid ground plane beneath the bridge IC (PI7C8148).
8. The power plane should face the return ground plane. No signals should be routed between power and ground.
9. Route clock signals on the top layer and avoid vias for these signals. Vias change the impedance and introduce more skew and reflections.
10. Do not use any connectors on clock traces.
11. Use wide traces for power and ground.
12. Keep high-speed noise sources away from the PI7C8148.
13. Remember that per PCI spec 2.2 sec 4.4.3.1, the PI7C8148 should have a primary PCI edge connector to PQFP pad trace distance of not more than 1.5 inches (37.5 mm) for signals coming from the primary PCI interface. Secondary interface signals would then be limited as in PCI motherboard layout rules.
Figure 1: Top Layer

Figure 2: Detail of top layer near external arbiter clock and req/gnt enter at lower left

Figure 3: Bottom layer
References
1. Pericom Semiconductor App Note #58. “Hardware Implementation Guide for the PI7C8152”
2. Pericom Semiconductor App Note #22. “Solutions to Current High-Speed Board Design”
4. PCI Local Bus specification 2.2 section 4.2.6 Pinout recommendation. p131.
5. PCI Local Bus specification 2.2 section 4.3.3. Pull-ups p.136.
6. Compact PCI PICMG 2.0 R3.0. p.17-20 “Electrical Requirements”.