Reference board User Guide for PI7C8152
By Glenn Sanders

Introduction
The Pericom PI7C8152 PCI-to-PCI bridge evaluation board demonstrates the bridge and allows testing of key features either before or during design / layout stages. The PI7C8152 PCI Bridge complies with PCI Local Bus specification 2.2, as well as PCI bridge specification 1.1.

Quick start
The numbers on the photo correspond to the text explanation on the right:

1) 3 standard, and one straddle mount PCI connectors.
2) Pin 1 on the golden PCI edge connector faces left when looking down on the component (bridge IC socket).
3) Secondary bus Vio select : 3.3V or 5V
4) Headers for sampling signals on the primary PCI bus
5) External arbiter socket
6) Switch to set speed and misc. functions

This board comes already configured to support:

a) Primary PCI voltage (p_VIO) follows motherboard keying.
b) Secondary PCI bus voltage is set to 3.3V at J2

c) 33 MHz primary (ie primary bus M66EN is low)
d) 33 MHz secondary (ie secondary bus M66EN is low)
e) internal arbiter is enabled
f) No need to connect external power in most applications; the host PCI bus can power all 4 secondary bus slots.

Default and (*) important switch settings at a glance:

<table>
<thead>
<tr>
<th>SW2</th>
<th>signal</th>
<th>default</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bpce</td>
<td>On</td>
<td>“off” Enables bus/power clock control function (BPCCE is high)</td>
</tr>
<tr>
<td>* 2</td>
<td>cfg66</td>
<td>On</td>
<td>“Off” selects Bridge is 66 MHz capable.</td>
</tr>
<tr>
<td>3</td>
<td>p_M66en</td>
<td>On</td>
<td>Reference board can be used in either 66 or 33 MHz motherboard slot.</td>
</tr>
<tr>
<td>4</td>
<td>s_M66en</td>
<td>On</td>
<td>“Off” sets Secondary bus is 66 MHz capable (S_M66EN is high)</td>
</tr>
<tr>
<td>* 5</td>
<td>PME#</td>
<td>Off</td>
<td>PME# is de-asserted in the off position</td>
</tr>
<tr>
<td>* 6</td>
<td>Arbiter_ctrl</td>
<td>On</td>
<td>“On” Internal arbiter is selected</td>
</tr>
<tr>
<td>7</td>
<td>Cntrl_GOZ</td>
<td>Off</td>
<td>“Off” pulls SCAN_TM_L high to disable Full Scan Test Mode</td>
</tr>
</tbody>
</table>
Defaults for Jumpers:

J1	not connected	Normally the reference board draws all power from the motherboard
J2	jumper 2-3	3.3 V secondary bus VIO
J3	not used	Ties P_VIO from motherboard PCI connector to the P_VIO signal to bridge
J4	jump 1-2	

BEFORE POWERING THE BOARD

a) **Speed selection:** Using the switch SW2, choose the speed setting for the secondary bus based upon the input primary bus speed:

<table>
<thead>
<tr>
<th>SW2</th>
<th>33/33</th>
<th>66/33 secondary</th>
<th>66/66</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2 CONFIG66 pri</td>
<td>On</td>
<td>Not supported</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2-3 M66EN pri</td>
<td>On</td>
<td>“”</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>2-4 M66EN sec</td>
<td>On</td>
<td>“”</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

(Note: The secondary bus will have output clocks at the same frequency of the input primary clock regardless of M66EN status at either bus.)

b) **Seat the board into a PCI slot on the main system board.** Looking from the front of the motherboard, the small lip on our reference board points to the back of the motherboard and the component side with the PI7C8152 bridge chip is on the left hand side. The motherboard PCI connector is adequate to powering the board with a few add-in cards.

c) **Connect any PCI cards desired on the secondary PCI bus.** For all PCI connectors on our reference board, when looking down onto the bridge IC, pin 1 is on the left side of the board. Notice that the external arbiter socket on the top side is closest to PCI connector pin 1. This also applies to the top mounted “straddle” connector. The PCI slots are keyed for 3.3V or universal connector add-in cards; putting in any cards backwards will short 5V to ground through the PCI connector. Also each PCI connector has in white stencil lettering “A1”, “B1”, “A62”, and “B62” at the 4 corners of each slot, as a reminder where pin 1 is on each connector.

At this point, the Pericom PI7C8152 reference board is ready for you to use.
Components and Jumper reference

U1 Pericom 8152 bridge IC
U2 not used
U3 not used
U4 not used
U5 not used
U6 P13B3257-W Mux/Demux bus switch
U7 socket for optional external arbiter

SW1 not used
SW2 speed, options selection
J1 auxiliary power, not stuffed
J2 secondary bus Vio select
J3 +3.3V source, not stuffed
J4 primary Vio follows motherboard

TABLE
a) Right side of board has JP1, JP2, JP3 list
b) SW2 default stencil list is replaced by this manual.

Switch listing

SW1: (does not exist)

<table>
<thead>
<tr>
<th>SW2</th>
<th>signal default</th>
<th>full description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bpcce</td>
<td>“off” Enables bus/power clock control function (BPCCE is high)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“on” puts a low at this signal. (This influences turning off PCI clocks under ACPI power management.)</td>
</tr>
<tr>
<td>2</td>
<td>cfg66</td>
<td>“Off” selects Bridge is 66 MHz capable. When “On” the bridge is set to 33 MHz on both primary and secondary buses.</td>
</tr>
<tr>
<td>3</td>
<td>p_M66en</td>
<td>“Off” sets P_M66EN high. Reference board can be used in 66 MHz motherboard slot.</td>
</tr>
<tr>
<td>4</td>
<td>s_M66en</td>
<td>“Off” sets Secondary bus is 66 MHz capable (S_M66EN is high)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“On” forces 33 MHz secondary bus (S_M66EN low)</td>
</tr>
<tr>
<td>5</td>
<td>PME#</td>
<td>Off De-asserts PME# to motherboard, this switch must be “off”</td>
</tr>
<tr>
<td>6</td>
<td>Arbctrl</td>
<td>On “On” selects Internal arbiter; “off” selects external arbiter but other changes needed also to activate external arbiter. See page 5.</td>
</tr>
<tr>
<td>7</td>
<td>Ctrl_GOZ#</td>
<td>Off Full Scan Test Mode. This switch must be in the “off” position for the board to function.</td>
</tr>
</tbody>
</table>
Jumper block listing

J1 **external power** connector. left to right [ground, ground, ground, +3.3V, +3.3V, +5V]
 Not stuffed, not used. *Pin 1 is +5V, pins 4-6 GND*

J2 **Vio select** 3-2 **3.3V** (left) 1-2 5V (right)
 This sets Vio for the secondary bus. The PCI Bridge will drive control signals to this voltage on the secondary
 bus. This should already be configured for you.

J3 **3.3V pin**
 J3 allows a method to **force** the bridge to use 3.3V signaling for communicating with a 66 MHz motherboard
 without disturbing the motherboard’s Vio, which is only useful when an older motherboard has a 66 MHz PCI bus
 keyed for 5V. *(This signal is NOT bused into the motherboard Vio.)* **Not stuffed.**

J4 **P_Vio select**
 The topmost pin at J4 is P_Vio from the motherboard and the center pin goes to our bridge.

Primary bus test points **JP1, JP2, JP3:**
These allow a logic analyzer or oscilloscope to monitor signals on the path between the 8150 and primary bus.
There are 3 rows of 16 header pins each, labeled JP1, next JP2, next JP3:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP1</td>
<td>GNT</td>
<td>AD30</td>
<td>AD27</td>
<td>AD24</td>
<td>AD22</td>
<td>AD19</td>
<td>AD16</td>
<td>IRDY</td>
</tr>
<tr>
<td>JP2</td>
<td>REQ</td>
<td>AD29</td>
<td>AD26</td>
<td>CBE3</td>
<td>AD21</td>
<td>AD18</td>
<td>CBE2</td>
<td>TRDY</td>
</tr>
<tr>
<td>JP3</td>
<td>AD31</td>
<td>AD28</td>
<td>AD25</td>
<td>AD23</td>
<td>AD20</td>
<td>AD17</td>
<td>FRAME</td>
<td>Devsel</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>JP1</td>
<td>STOP</td>
<td>SERR</td>
<td>AD15</td>
<td>AD12</td>
<td>AD9</td>
<td>AD7</td>
<td>AD3</td>
<td>AD1</td>
</tr>
<tr>
<td>JP2</td>
<td>LOCK</td>
<td>PAR</td>
<td>AD14</td>
<td>AD11</td>
<td>CBE0</td>
<td>AD6</td>
<td>AD5</td>
<td>AD0</td>
</tr>
<tr>
<td>JP3</td>
<td>PERR</td>
<td>CBE1</td>
<td>AD13</td>
<td>AD10</td>
<td>AD8</td>
<td>AD4</td>
<td>AD2</td>
<td>IDSEL</td>
</tr>
</tbody>
</table>

(A copy of this table is present on the right hand side of the component side of the reference board.)

Note: correction, **JP3-16 should be “IDSEL” not “Ground”**

Test points description: These allow convenient sampling of signals by logic analyzer or oscilloscope:

- **T1** Primary TRST GPIO **TP1** ground TP11 Gnt to 2nd slot
 - **T2** Primary TCK GPIO **TP2** ground TP12 Gnt to 1st (bottom) slot
 - **T3** Primary TMS GPIO **TP3** ground TP13 Req to top(4th) slot
 - **T4** INTA# **TP4** ground TP14 Req to 3rd slot
 - **T5** Primary TDO GPIO **TP5** ground TP15 Req to 2nd slot
 - **T6** (not present) **TP6** ground TP16 Req to 1st (bottom) slot
 - **T7** INTB# **TP7** ground
 - **T8** Primary clock input **TP8** ground
 - **T9** INTC# **TP9** Gnt to top (4th) slot
 - **T10** INTD# **TP10** Gnt to 3rd slot
 - **T11** Primary Reset# **TP11** Gnt to 2nd slot
 - **T12** (not present)
 - **T13** SCAN_EN

OPTIONAL External Arbiter:
For **internal** arbiter, SW2 -6 is ON (closed). *This is the default.*
For external arbiter, a number of changes are made to the board:

- Move SW2-6 to Off position.
- Remove the 0-Ohm resistors at R35, R36, R37, R38 to remove connections from slot REQ#s to PCI bridge. Remove R2 to disable clock connection to slot 1 (bottom most slot).
- **Add a rework wire** from R2 pin 2 to R10 pin 1. This supplies a clock to the external arbiter.
- **Stuff 0-Ohm** resistors into R121, R122, R123 to add REQ# connections from the external arbiter to each slot. Also, stuff 0-Ohm resistors at R127, R128 to add GNT0# and REQ0# connections to the PCI bridge from the External arbiter.

Finally, stuff socket U5 with an appropriately programmed Xilinx XC9572 CPLD (availability of code TBD)

The BOTTOM slot (connector closest to PCI bridge) is not useable in external arbiter mode.

Asynchronous clock mode: This layout reference board does not have the external clock buffer and oscillator needed for asynchronous secondary bus clock mode.

Where to find more information: