

Table of Contents

Chapter 1. Summary	2
1.1 General Description	2
1.2 Key Features	2
1.2.1 System Key Features	
1.2.2 AP3108L Key Features	2
1.2.3 APR348 Key Features	2
1.2.4 AP43771 Key Feature	
1.2.5 EUP3271 Key Feature	2
1.3 Applications	2
1.4 Main Power Specifications	2
1.5 Evaluation Board Picture	2
Chapter 2. Power Supply Specification	on _ 3
2.1 Specification and Test Results	3
2.2 Compliance	3
Chapter 3. Schematic	4
3.1 EV1 Board Schematic	4
3.2 Bill of Material (BOM)	5
3.3 Transformer Design	8
3.4 Schematics Description	8
3.4.1 AC Input Circuit & Differential Filter	8
3.4.2 AP3108L PWM Controller	
3.4.3 APR348 Synchronous Rectification (SR) N Driver	
3.4.4 AP43771 PD 3.0 Decoder & Protection of	n/off P
MOSFET and Interface to Power Devices	
3.4.5 Detection of A-Port Connection and Pow	
Sharing Scheme	9
4.1 EVB PCB Layout	10
4.2 Quick Start Guide Before Connection	10
4.3 System Setup	11
4.3.1 Connection with E-Load	11
4.3.2 USBCEE PAT Tester	11
4.3.3 Input & Output Wires Connection	12
Chapter E Tecting the Evaluation Po	and

5.1 Input & Output Characteristics	12
5.1.1 Input Standby Power	12
5.1.2 Input Power Efficiency at Different AC Line	
Input Voltage	13
5.1.3 Average Efficiency at Different Loading	14
5.1.4 60W A+C PD3.0 Type-C Port Average Efficienc	y
at Different Loading (USB-A Port Off)	16
5.1.5 USB-A Port Average Efficiency at Different	
Loading (Type-C Port Off)	17
5.2 Key Performance Waveforms	18
5.2.1 60W A+C PD3.0 System Start-up Time	18
5.2.2 Q1 /Q2 Main Switching Voltage MOSFET Stres	S
on at Full Load @264Vac	18
5.2.3 System Output Ripple & Noise with @ PCB En	d
	19
5.2.4 Dynamic load10% Load~90% Load, T=10	mS,
Rate=100mA/uS (PCB End)	22
5.2.5 Output Voltage Transition Time from Low to	
High	25
5.2.6 Output Voltage Transition Time from High to	
Low	26
5.2.7 Thermal Testing	27
5.3. EMI (CE) Testing	29
	29
5.3.2 230Vac @ Full Load testing results	30

Chapter 5. Testing the Evaluation Board

Chapter 1. Summary

1.1 General Description

Co-existence of PD Type C and QC3.0 Micro Type B equipped smartphones gives rise to popular needs for multiple-port Type "Cs'+As" chargers and adaptors. The 60W adaptor EV1 board exemplifies a dual-port "C+A" smart power-sharing feature to optimize system BOM cost and maximize usage of total power and protocol decoder usage.

When only one port is connected, PD3.0 or QC3.0 could be supported through the protocol decoder AP43771T16 for Type C or A port, respectively. When both Type C and A ports are connected, total power will be shared between Port A (maximum 15W) and Port C (balance of the total maximum power design).

Typical applications are more suitable for relatively larger power adaptor with power over 30W.

1.2 Key Features

1.2.1 System Key Features

- SSR Topology Implementation with an Opto-coupler for Accurate Step Voltage Controlling
- USB PD 3.0 Compliance Type-C Port, QC3. Compliance Type-A Port,
- Meets DOE VI and COC Tier 2 Efficiency Requirements
- <100mW No-Load Standby Power for overall system
- Low overall system BOM cost

1.2.2 AP3108L Key Features

- Current Mode PWM Controller (CCM)
- Frequency Shift function changes frequency per line loading
- Frequency fold back for high average efficiency
- Integration of High-Voltage Start-Up Circuit to enable low standby power (<30mW)
- Integration of 120V LDO, X-Cap discharge for minimal system BOM components
- Constant load output current during output short circuit
- Rich Protection Functions: , Precise Secondary Side OVP, UVP, OLP, BNO, FOCP, SSCP, External Programmable OTP

1.2.3 APR348 Key Features

- Synchronous Rectification Working at DCM, CCM and QR Flyback
- Eliminate Resonant Ringing Interference
- Fewest External Components used

1.2.4 AP43771 Key Feature

- Supports USB PD3.0 PPS Type-C and QC4/QC4+
- Drives N-Channel MOSFET for Load Switch
- Built-in VBUS Discharger Pin
- 3V-20V operation voltage without external regulator
- On-chip OVP,UVP,OCP and SCP
- Supports OTP through integrated ADC circuit
- USB PD3.0 PPS Compliance (TID : 1100023)

1.2.5 EUP3271 Key Feature

- CC/CV Mode Synchronous Step-Down Converter (up to 4A)
- Duty ratio from 0 to 100% PWM, co-package MOSFET
- Switching frequency 300KHz typical, SOP-8L package
- With current limit, Enable & Thermal shutdown functions
- <u>http://www.eutechmicro.com/index.php?a=products_dat</u> <u>a&id=353</u>

1.3 Applications

Dual-Port C+A Quick Charger with PD3.0 or QC3.0 + 5V-2.4A

1.4 Main Power Specifications

Par	ameter	Value
Input Voltage		90Vac to 264Vac
Input sta	ndby power	< 100mW
	Only - C IN	60W PD3.0 (5V,9V,12V,15V,20V- 3A)
Main	Only - A IN	A port: 5V/2.4A
Output Vo / Io	C & A - IN	C - 45W PD3.0 (5V,9V,12V,15V- 3A, <mark>20V2.25A</mark>)
		A - 12W (5V/2.4A)
Type C c Efficienc		>90%
Combine	Efficiency	>89%
Total Ou	tput Power	60W
Protections		OVP, UVP, OLP, BNO, FOCP, SSCP, OTP
XYZ Dimension		L55 x 55 x 25mm
ROHS C	ompliance	Yes

1.5 Evaluation Board Picture

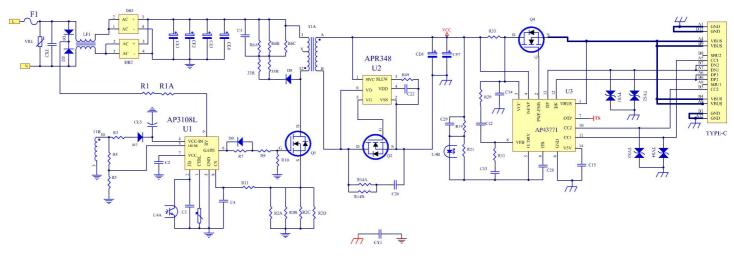
Figure 1: Top View

Figure 2: Bottom View

Chapter 2. Power Supply Specification

2.1 Specification and Test Results

Parameter	Test conditions	Min	Nom	Max	Eff/ DoE VI	Test Summary
V _{acin} Input Voltage		90 Vrms	115/230	264 Vrms		
F _{line} Frequency		47 Hz	50/60	64 Hz		
l _{in} Input Current				1.5 Arms		Pass
Standby Power (mW) @ No load conditions	At 230Vac_in/50Hz @ No Load			100mW		Pass , the test result is 70mW
5V/3A+5V/2.4A @115Vac/230Vac, Average efficiency	Board end				>80.82%	Pass, average efficiency is 88.16%
9V/ 3A+5V/2.4A @115Vac/230Vac, Average efficiency	Board end				>83.58%	Pass, average efficiency is 89.29%
12V/3A+5V/2.4A @115Vac/230Vac, 100% efficiency	Board end				-00.10/0	Pass, average efficiency is 88.94%
15V/3A+5V/2.4A @115Vac/230Vac, 100% efficiency	Board end				-00.00 /0	Pass, average efficiency is 88.83%
20V/2.25A+5V/2.4A @115Vac/230Vac,100% efficiency	Board end				- 00.00 /0	Pass, average efficiency is 89.12%
USB-A 5V-2.4A	Board end		5V-2.4A			


2.2 Compliance

Parameter	r Test conditions		High to Low	standard	Test Summary
Output Voltage Transition time	5V/3A to 9V/3A	58ms	58ms	275ms <	Pass
Output Voltage Transition time	9V/3A to 12V/3A	47ms	46ms	275ms <	Pass
Output Voltage Transition time	12V/3A to 15V/3A	46ms	43ms	275ms <	Pass
Output Voltage Transition time	15V/3A to 20V/3A	71ms	74ms	275ms <	Pass
Output Voltage Transition time	5V/3A to 20V/3A	202ms	204ms	275ms <	Pass
Output Connector	USB Type-C & USB-A	-	-	-	
Temperature	90Vac , Full Load	-	-	-	Pass
Dimensions (W /D/ H)	L55mm x55mm x 25mm	-	-	-	
Safety	IEC/EN/UL 60950 Standard	-	-	-	
EMI Conduction	FCC/EN55022 Class B	-	-	-	6db Margin, Pass

Chapter 3. Schematic

3.1 EV1 Board Schematic

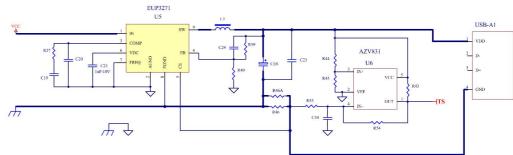


Figure 3: 60W A+C Share Power EV1 Board Schematic

For multiple outputs

DoE VI Eff ≥ 0.0750xLn(Po)+0.561	1 49W	27W (5Vx3A+5Vx2.4A) 39W (9Vx3A+5Vx2.4A)	
DoE VI Eff ≥ Pout > 49W >= 86.0%	57W (60W A+C	+12W)>49W Eff>=86	

3.2 Bill of Material (BOM)

BOM1

Designator	Description	Part Number	Manufacturer	Footprint	Quantity
D1, D2, D7	1.0A/1000V RECTIFIER	S1MWF	DIODES	SOD123	3
D8	1.5.0A/1000V RECTIFIER	RS2MA	DIODES	SMA	1
D9	FAST SWITCHING DIODE	1N4148WS	DIODES	SOD-323	1
DB1, DB2	3.0A/1000V BRIDGE RECTIFIER	MSB30M	DIODES	MSBL	2
Q2	100V N-CHANNEL, RDS(ON)=8.3mΩ @VGS = 10V	DMT10H010LPS -13	DIODES	PowerDI506 0-8	1
Q4	30V N-CHANNEL ENHANCEMENT MODE MOSFET	DMN3008SFGQ	DIODES	DFN3*3	1
TVS1, TVS2, TVS3, TVS4	VBR(min)=5.5V,BIDIRECTI ONAL TVS DIODE	DESD5V0S1BA	DIODES	SOD-323	4
U1	CCM PWM CONTROLLER-	AP3108L	DIODES	SSOP-9	1
U2	SECONDARY SIDE SR CONTROLLER	APR348	DIODES	SOT23-6	1
U3	USB PD CONTROLLER	AP43771	DIODES	DFN14	1
U6	single channel rail-to-rail input and output amplifier	AZV831	DIODES	SOT-23-5	1
U4	TCLT1006		VISHAY	PC-SMD	1
U5	PWM CONTROL 3A STEP- DOWN CONVERTER	EUP3271	EUTECH	SOP-8	1
Q1	650V N-Channel MOSFET, 12A, Rds(ON)=250mΩ	FCPF250N65S3	Fairchild	TO-220F	1
C1	1nF/1KV			C1206	1
C4	220pF/50V			C0603	1
C2	6.8uF/50V			C1206	1
C14	100nF/50V			C0603	1
CE5	6.8uF/100V, E-CAP			EC5	1

BOM2

Designator	Description	Part Number	Manufacturer	Footprint	Quantity
C12,C3,C29	1.2nF/50V			C0603	1
C26	2.2nF/200V			C0805	1
C22	3.3uF/10V			C0603	1
C28	Not Used				
C15	10uF/7.5V			C0805	1
C19	10nf/16V			C0603	1
C13	68nF/50V			C0603	1
C20	22PF/16V			C0603	1
C21	1uF/10V			C0603	1
C24,C34	100pF/16V			C0603	2
CE1A	NC			C1206	
CX1	330nF/275VAC, X-CAP				1
CY1	1.5nF/300VAC, Y-CAP			CY-10.0	1
EC1, EC2, EC3,EC4	27UF/400V,E-CAP			EC10.0	4
EC6,EC7	680UF/25V, Solid Cap			EC5.0	2
EC8	470UF/6.3V, Solid Cap			EC3.5	1
F1	T3.15A/250V, Fuse			FUSE1	1
J1	TYPE-C, Connector			C-TYPE-C	1
J2	USB-A, Connector			USB-A	1
L1	22uH Ring Core inductor			L1	1
LF1	Common Chock, LP >20mH				1
VR1	10D561			VR-7D561	1
T1	Transformer, Lp=600uH	PQ2620		PQ2620	1

BOM3

Designator	Description	Part Number	Manufacturer	Footprint	Quantity
R1, R1A	10K			R1206	2
R6A,R6B,R6C	820K			R1206	3
R8A, R8B	33R			R1206	2
R14A, R14B	43R			R1206	2
R49	24K			R0603	1
R7	47R			R0603	1
R2A,R2B,R2C,R2D	1.2R			R1206	4
R9	10R			R0603	1
R10	33K			R0603	1
R3	2.2R			R0805	
R4	270K±1%			R0603	1
NTC1	100K NTC Resistor			R0603	1
R5	20K±1%			R0805	1
R29,R45	1K			R0603	2
R43	10K±1%			R0603	1
R21,R31	4.7K			R0603	2
R39	100K±1%			R0603	1
R37	200K			R0603	1
R40	13.7K±1%			R0603	1
R44,R54	1M			R0603	2
R46,R46A	39mR±1%, 1/4W			R1206	2
R33	Current Sensing Resistor, Metal Strip Type, $10mR\pm1\%$, $1W$		SART TECHNOLOGY	R1206	1
R19	зк			R1206	1
R53	150R			R0603	1

3.3 Transformer Design

T1=PQ2620(AE=120mm ²)			Rev2.0			
NO.	Name	TERMIN	IAL NO.	Winding		
		Start	Finish	Wire	Turns	Layers
1	Np1	5	4	Ф 0.15mm*9P 2UEW	27	2
2	Na	1	6 (GND)	Φ0.15*1P 2UEW	15	1
2	Shiled1	6 (GND)	NC	Ф 0.15*2Р 2UEW	15	I
3	Ns	А	В	Ф 0.23mm *15P ТІѠ-В	6	1
4	Shield2	6 (GND)	NC	Φ 0.15mm*1P 2UEW	28	1
5	Np2	4	3	Ф 0.15mm*9Р 2UEW	13	1

Primary Inductance	Pin 5-3,all other windings open, measured at 20kHz, 0.4VRMS	600uH, ±5%
Primary Leakage Inductance	Pin 5-3, all other windings shorted, measured at 20kHz, 0.4VRMS	20 uH (Max.)

3.4 Schematics Description

3.4.1 AC Input Circuit & Differential Filter

There are three components in the section. The Fuse F1 protects against over-current conditions which occur when some main components failed. The LF1 & CX1 are common mode chock filter for the common mode noise suppression because of the large impedance of each coil. The DB1 & DB2 are rectifier, and basically converts alternating current & voltage into direct current & voltage.

3.4.2 AP3108L PWM Controller

The AP3108L PWM controller U1 and Opto-Coupler U4 and Q1 are the power converting core components, connected to filter AC input & after bridge circuit, R1 & R1A resistor path provides start-up voltage and current during starting up phase through HV (Pin 9). Subsequent VCC power will be provided by voltage feedback from the auxiliary winding through R3-D7. This design is to accommodate required wide arrange voltage range to support various protocols from 5V to 20V.

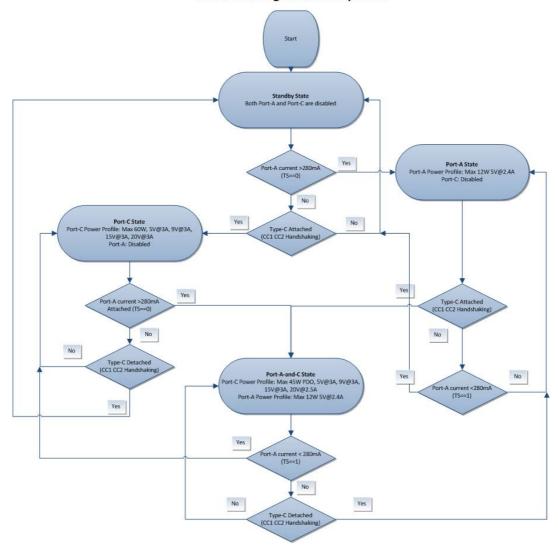
Based on feedback of secondary side current of information (Pin VFB_Out of AP43771 Decoder) through Opto-coupler U4 to primary side (FB pin of AP3108L), AP3108L PWM controller will switch ON and Off Q1 to regulate desired voltage and current on the secondary side.

3.4.3 APR348 Synchronous Rectification (SR) MOSFET Driver

The IC APR348 is SR Mosfet driver would operate at DCM/CCM mode in this design that based on input voltage & current loading. As the power loss with the APR346-controlled MOSFET Q2 that is less than Schottky Diodes, the total efficiency can be improved.

3.4.4 AP43771 PD 3.0 Decoder & Protection on/off P MOSFET and Interface to Power Devices

- Few important pins provide critical protocol decoding and regulation functions in AP43771:
 - 1) CC1 & CC2 (Pin 7, 8): CC1 & CC2 (Configuration Channel 1 & 2) are defined by USB Type-C spec to provide the channel communication link between power source and sink device.
- 2) Constant Voltage (CV): The CV is implemented by sensing VFB (pin 8) and comparing with internal reference voltage to generate a CV compensation signal on the OCDRV pin (pin 5). There is a loop compensation circuit C13 & R31 between Pin8 & Pin5, and the voltage response speed can be controlled by adjusting their value. The output voltage is controlled by firmware through CC1/CC2 channel communication with the sink device.
- 3) Over Current Protection (OCP): The OCP is implemented by using R33 between Pin3 & Pin4.

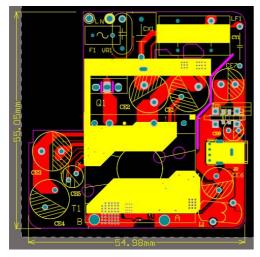


- 4) OCDRV (Pin5): It is the key interface link from secondary decoder (AP43771) to primary regulation circuit (AP3108L). It is connected to Opto-coupler U4B Cath for feedback information based on all sensed CC1/ CC2 signals for getting desired Vbus voltage & current.
- 5) PWR_ENB (Pin2) to N-MOSFET Gate: The pin is used to turn on/off N-MOSFET (Q4) to enable/disable voltage output to the Vbus.

3.4.5 Detection of A-Port Connection and Power Sharing Scheme

Detection of A-Port connection is simply done by using current sense resister (R46 & R46A) and a single amplifier (U6). A-Port is connected by Type A to Micro B cable (to Phone). A-Port charge start to charging phone, and charging current flow through R46 & R46A, when the voltage of R46 & R46A is bigger than threshold voltage set by R44 & R45, the output of amplifier U6-V_{TS} would turn into low voltage(close to 0V).

In separate path, OTP Pin (Pin 7) of AP43771, served as a GPIO pin, is used to notify embedded MCU of AP43771 to trigger proper power sharing algorithm – 15W reserved for Port A and balance of maximum power design less 15W will be allocated to Port C to perform PD3.0 power profile functions.


Power Sharing Control Sequence

Chapter 4. The Evaluation Board (EVB) Connections

4.1 EVB PCB Layout

The thickness for both sides of PCB board trace cooper is 2 Oz.

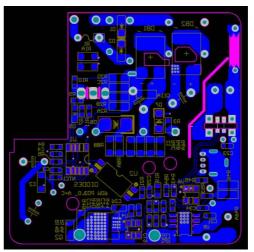
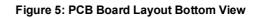



Figure 4: PCB Board Layout Top View

4.2 Quick Start Guide Before Connection

Before starting the 60W_A+C EVB test, the end user needs to prepare the following tool, software and manuals.
 For details, please consult USBCEE sales through below link for further information.
 USBCEE PD3.0 Test Kit: USBCEE Power Adapter Tester. <u>https://www.usbcee.com/product-details/4</u>

USBCEE PAT Tester	GUI Display	USB-A to Micro-B Cable	Type-C Cable
	04.75V		O.

Figure 6: Test Kit / Test Cables

- 2) Prepare a certified three-foot Type-C cable and a Standard-A to Micro-B Cable.
- 3) Connect the AC inputs: L & N wires of EVB to AC power supply output "L and N "wires.
- 4) Ensure that the AC source is switched OFF or disconnected before the connection steps.
- 5) A type-C cable for the connection between EVB's and Type-C receptacles of test kit.
- 6) Output of Type-C port & USB A-port are connected to E-load + & terminals by cables.

4.3 System Setup

4.3.1 Connection with E-Load

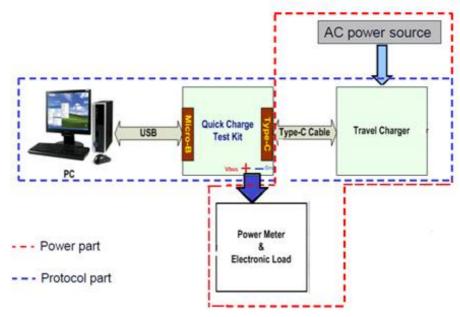


Figure 7: Diagram of Connections in the Sample Board

4.3.2 USBCEE PAT Tester

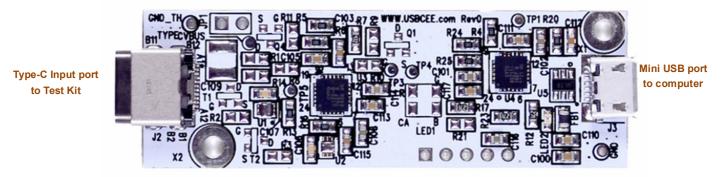


Figure 8: The Test Kit Input & Output and E-load Connections

4.3.3 Input & Output Wires Connection

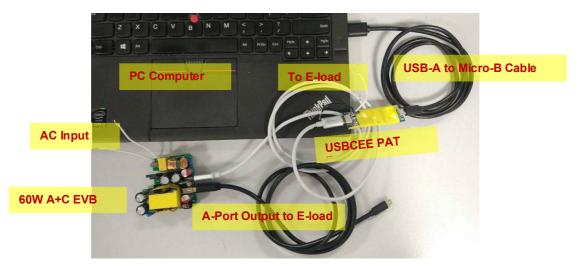
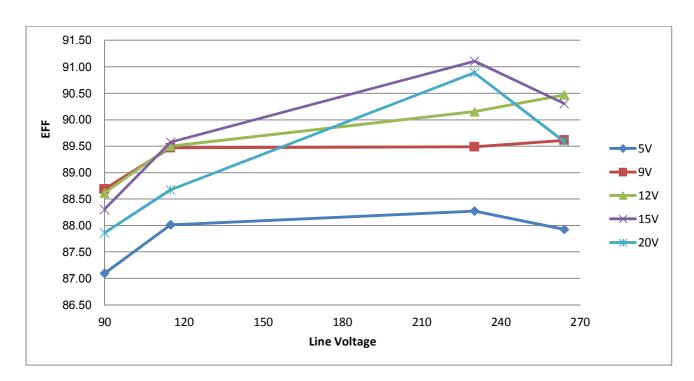


Figure 9: Wire Connection of 60W A+C PD3.0 EVB to Test Kit and PC Computer

Chapter 5. Testing the Evaluation Board

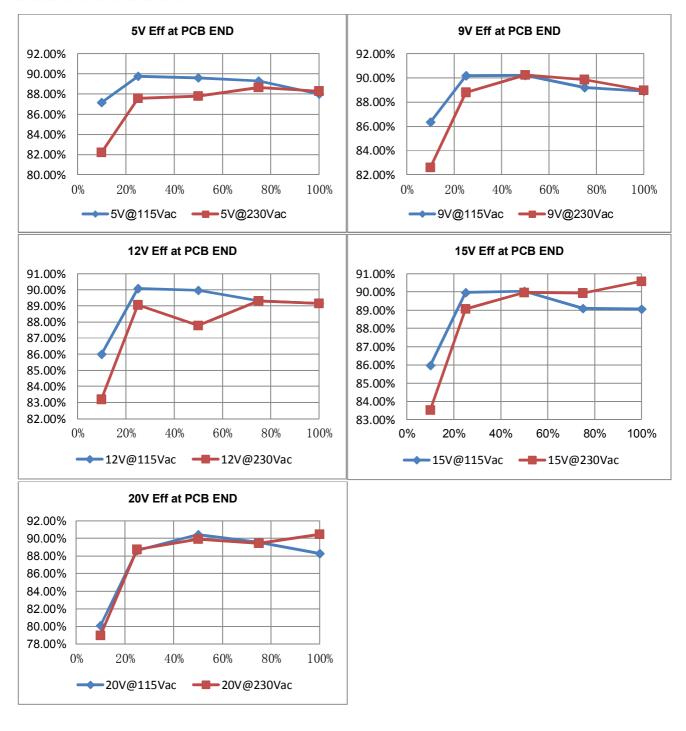
5.1 Input & Output Characteristics

5.1.1 Input Standby Power


	Input Voltage (Vac)	Standby Power (mW)
60W A+C PD3.0 Charger	115	66
(USB-A Port =5V/0A &USB-Type C Port=5V/0A)	230	70
60W A+C PD3.0 Charger	115	28
USB-A board is disconnected (USB-Type C Port = 5V/0A)	230	36

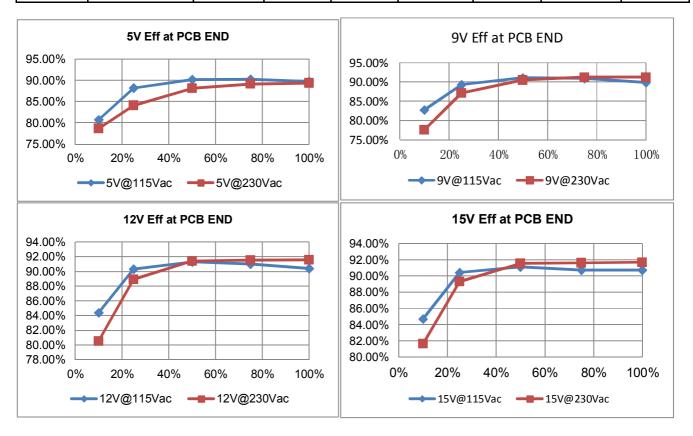
5.1.2 Input Power Efficiency at Different AC Line Input Voltage

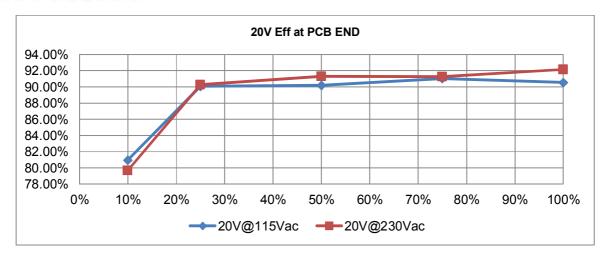
Vin(VAC)	Freq(HZ)	Vin(V)	lin(A)	PF	Pin(W)	Vout(V)	lout(A)	Pout(W)	Eff (%)
00	47	00.01	0.70	0.474	20.70	5.035	3	15.105	07.40
90	47	90.01	0.72	0.474	30.79	4.88	2.4	11.712	87.10
445	<u> </u>		0.004	0.407	00.47	5.035	3	15.105	00.04
115	60	115.14	0.604	0.437	30.47	4.88	2.4	11.712	88.01
000	50	000.07	0.04	0.007	20.20	5.035	3	15.105	00.07
230	50	230.37	0.34	0.387	30.38	4.88	2.4	11.712	88.27
004	60	004.05	0.000	0.074	20 5	5.035	3	15.105	07.00
264	63	264.35	0.308	0.374	30.5	4.88	2.4	11.712	87.92
00	47	00.01	0.001	0.540		9.065	3	27.195	00.00
90	47	90.01	0.961	0.513	44.4	5.075	2.4	12.180	88.68
115	60	115 10	0.954	0.447	44.01	9.065	3	27.195	90.47
115	60	115.12	0.854	0.447	44.01	5.075	2.4	12.180	89.47
220	50	220.25	0.405	0.000	44.00	9.065	3	27.195	00.40
230	50	230.35	0.485	0.393	44.00	5.075	2.4	12.180	89.49
264	62	264.24	0 422	0.202	43.94	9.065	3	27.195	89.61
264	63	264.34	0.433	0.383	43.94	5.075	2.4	12.180	00.01
90	47	89.96	1 1 2 7	0 5 2 2	EA EE	12.095	3	36.285	88.61
90	47	09.90	1.137	0.532	54.55	5.022	2.4	12.053	00.01
445	<u> </u>	445.07	0.00	0.470	E4 04	12.095	3	36.285	89.50
115	60	115.07	0.99	0.473	54.01	5.022	2.4	12.053	
220	50	220.22	0 5 9 5	0.207	207 52.62	12.095	3	36.285	00.15
230	50	230.32	0.585	0.397	53.62	5.022	2.4	12.053	<u> </u>
264	63	262.24	0.501	0.207	53.43	12.095	3	36.285	00.47
264	03	263.31	0.521	0.387	55.45	5.022	2.4	12.053	90.47
00	47	00.01	1 22	0 5 4 9	65.02	15.124	3	45.372	00.24
90	47	90.01	1.32	0.548	65.03	5.022	2.4	12.053	88.31
115	60	115 10	1.123	0.496	64.11	15.124	3	45.372	89.57
115	00	115.12	1.123	0.490	04.11	5.022	2.4	12.053	09.07
220	50	230.35	0.682	0.4	63.03	15.124	3	45.372	91.11
230	50	230.33	0.002	0.4	03.03	5.022	2.4	12.053	91.11
264	63	264.34	0.613	0.391	63.59	15.124	3	45.372	90.30
204	03	204.34	0.015	0.391	03.59	5.022	2.4	12.053	90.30
00	47	90.06	1 2 2 7	0 5 4 9	65.46	20.183	2.25	45.412	07.06
90	47	89.96	1.327	0.548	65.46	5.042	2.4	12.101	87.86
115	60	115.07	1 107	0.5	64.86	20.183	2.25	45.412	89 67
110	00	113.07	1.127	0.5	04.00	5.042	2.4	12.101	- 88.67
220	50	220.22	0.696	0.4	63.20	20.183	2.25	45.412	00.90
230	50	230.32	0.686	0.4	63.28	5.042	2.4	12.101	90.89
264	62	263.21	0.62	0.201	64.2	20.183	2.25	45.412	80.59
264	63	263.31	0.62	0.391	64.2	5.042	2.4	12.101	89.58



5.1.3 Average Efficiency at Different Loading

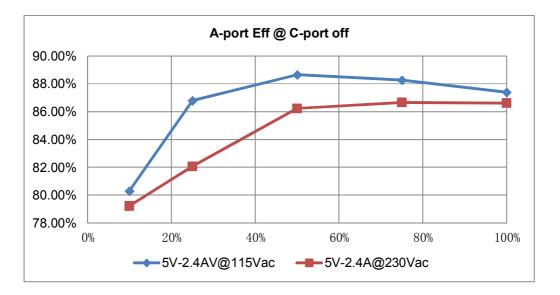
Vin	Vo	25% Load	50% Load	75% Load	100% Load	Average Efficiency	Energy Star Level VI	10% Load Efficiency
	PDO=5V/3A & 5V-2.4A	89.76%	89.62%	89.29%	87.99%	88.16%	>80.82%	87.17%
	PDO=9V/3A & 5V-2.4A	90.18%	90.20%	89.21%	88.90%	89.29 %	>83.58%	86.35%
115V/60Hz	PDO=12V/3A & 5V-2.4A	90.08%	89.97%	89.31%	89.15%	88.94%	>85.13%	86.01%
	PDO=15V/3A & 5V-2.4A	89.97%	90.04%	89.10%	89.06%	88.83%	>86.00%	85.98%
	PDO=20V/2.25A & 5V-2.4A	88.64%	90.45%	89.54%	88.27%	89.12%	>86.00%	80.12%
	PDO=5V/3A & 5V-2.4A	87.58%	87.79%	88.64%	88.29%	88.08%	>80.82%	82.21%
	PDO=9V/3A & 5V-2.4A	88.80%	90.23%	89.85%	88.97%	89.46%	>83.58%	82.59%
230V/50Hz	PDO=12V/3A & 5V-2.4A	89.06%	87.79%	89.31%	89.15%	89.19%	>85.13%	83.20%
	PDO=15V/3A & 5V-2.4A	89.06%	89.97%	89.93%	90.59%	89.53%	>86.00%	83.54%
	PDO=20V/2.25A & 5V-2.4A	88.75%	89.92%	89.44%	90.47%	89.65%	>86.00%	78.98%





Vin	Vo	25% Load	50% Load	75% Load	100% Load	Average Efficiency	Energy Star Level VI	10% Load Efficiency
	PDO=5V/3A	88.16%	90.17%	90.18%	89.71%	89.56%	>81.39%	80.71%
	PDO=9V/3A	89.30%	91.06%	90.95%	89.88%	90.30%	>86.62%	82.77%
115V/60Hz	PDO=12V/3A	90.32%	91.30%	90.98%	90.40%	90.75%	>87.74%	84.41%
	PDO=15V/3A	90.44%	91.12%	90.72%	90.73%	90.75%	>87.73%	84.69%
	PDO=20V/3A	90.06%	90.20%	91.05%	90.52%	90.46%	>88.00%	80.97%
	PDO=5V/3A	84.06%	88.10%	89.12%	89.34%	87.65%	>81.39%	78.63%
	PDO=9V/3A	87.14%	90.53%	91.23%	91.22%	90.03%	>86.62%	77.62%
230V/50Hz	PDO=12V/3A	88.91%	91.43%	91.56%	91.59%	90.87%	>87.74%	80.55%
	PDO=15V/3A	89.33%	91.55%	91.60%	91.68%	91.04%	>87.73%	81.69%
	PDO=20V/3A	90.28%	91.31%	91.25%	92.15%	91.25%	>88.00%	79.70%

5.1.4 60W A+C PD3.0 Type-C Port Average Efficiency at Different Loading (USB-A Port Off)



5.1.5 USB-A Port Average Efficiency at Different Loading (Type-C Port Off)

	Vin	Vo	25% Load	50% Load	75% Load	100% Load	Average Efficiency	Energy Star Level VI	10% Load Efficiency
1	15V/60Hz	5V-2.4A	86.80%	88.67%	88.27%	87.41%	87.79%	>79.94%	80.30%
2	230V/50Hz	5V-2.4A	82.07%	86.25%	86.67%	86.63%	85.40%	>79.94%	79.23%

5.2 Key Performance Waveforms

5.2.1 60W A+C PD3.0 System Start-up Time

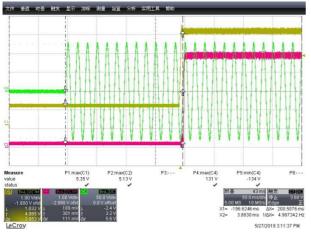


Figure 10: 60W A+C turn on time is 0.2s at Full Load @ 90Vac

5.2.2 Q1 /Q2 Main Switching Voltage MOSFET Stress on at Full Load @264Vac

Primary side MOSFET - Q1

Secondary side SR MOSFET- Q2

Figure 11: Q1 Vds Voltage stress

Figure 12: Q2 Vds Voltage stress

Voi	ut	Vds(V)	Vds_Max_S pec	Ratio of voltage stress	Vout	Vds(v)	Vds_Max_Sp ec	Ratio of voltage stress
20	V	587V	650V	90.30%	20V	83.5V	100V	83.5%*

5.2.3 System Output Ripple & Noise with @ PCB End

5.2.3.1 Type-C Output Ripple & Noise with @ PCB End

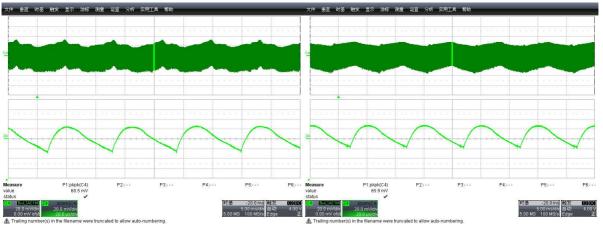


Figure 13: 90Vac/60Hz ΔV=68.5mV @5V/0A

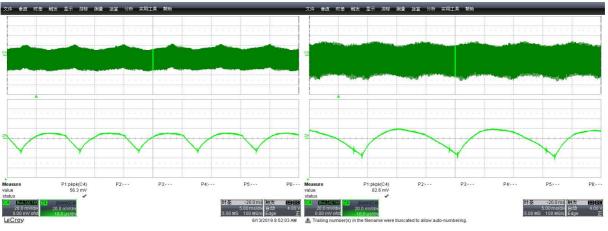
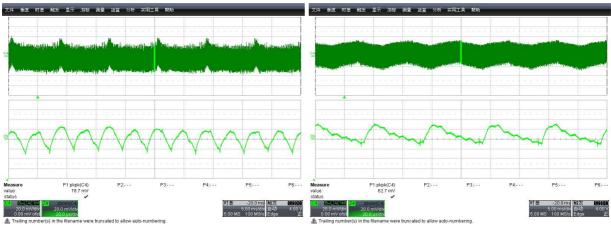
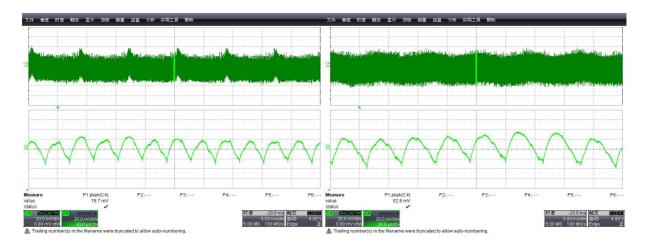
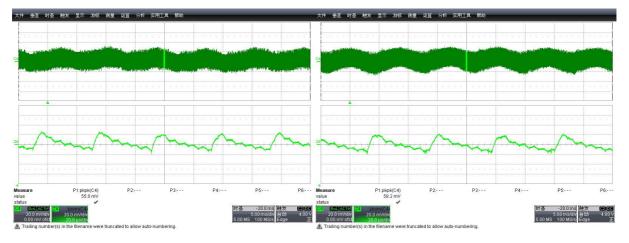
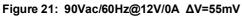


Figure 15: 90Vac/60Hz@ 5V/3A ΔV=56.3mV

Figure 16: 264Vac/50Hz@5V/3A ΔV=82.6mv


Figure 17: 90Vac/60Hz@9V/0A ΔV=78.7mV


Figure 18: 264Vac/50Hz @9V/0A ΔV=62.7mV

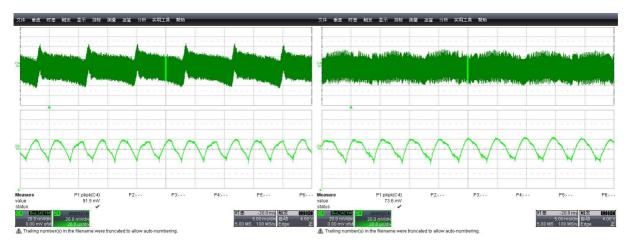
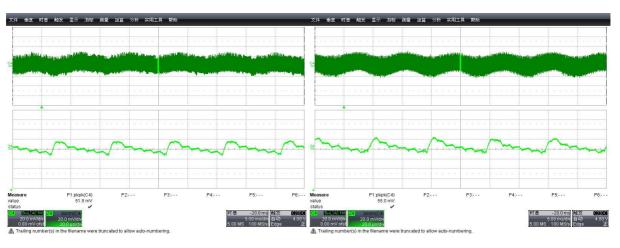
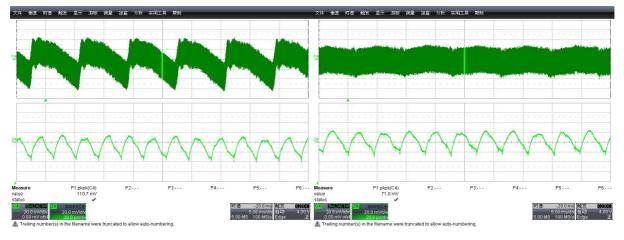


Figure 19: 90Vac/60Hz@9V/3A ΔV=78.7mV





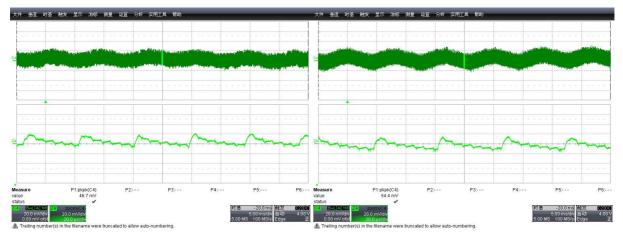
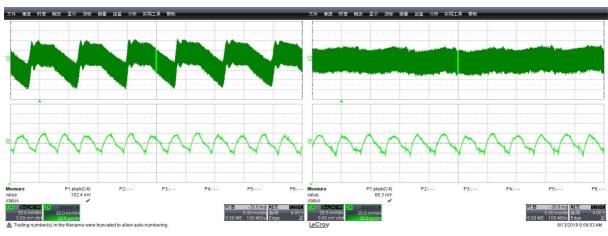
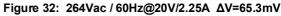
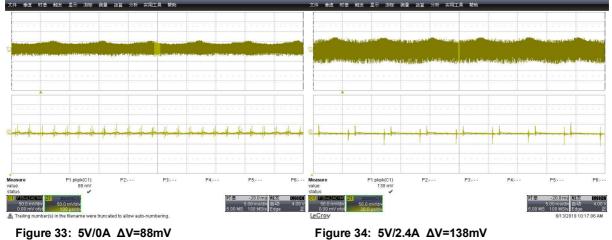
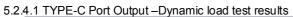


Figure 29: 90Vac/60Hz@20V/0A ΔV=46.7mV


Figure 31: 90Vac/60Hz@20V/2.25A ΔV=102.4mV

5.2.4 Dynamic load ----10% Load~90% Load, T=10mS, Rate=100mA/uS (PCB End)

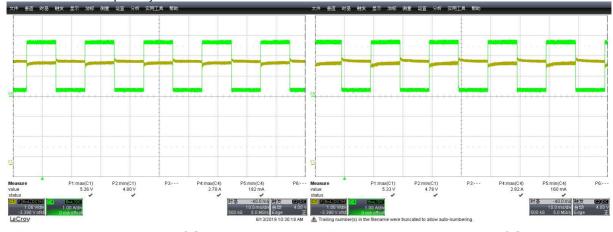


Figure 28: 90Vac / 60Hz Port-C@ Vout=5V

Figure 29: 264Vac / 60Hz Port-C@ Vout=5V

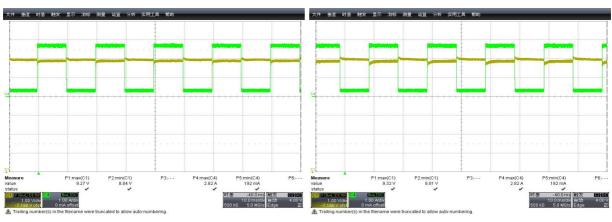


Figure 30: 90Vac / 60Hz Port-C@ Vout=9V

Figure 31: 264Vac / 60Hz Port-C@ Vout=9V

	Vo_ Undershoot(V)	Vo_Overshoot(V)		Vo_Undershoot(V)	Vo_Overshoot(V)
Vin =90Vac@5V	4.80	5.26	Vin =90Vac@9V	8.84	9.27
Vin=264Vac@5V	4.78	5.23	Vin=264Vac@9V	8.81	9.32

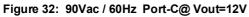
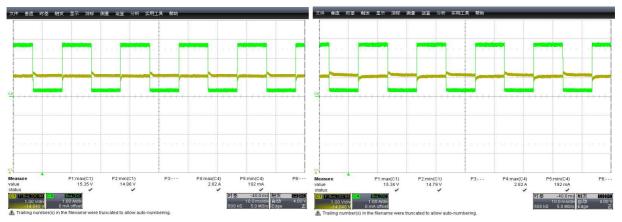
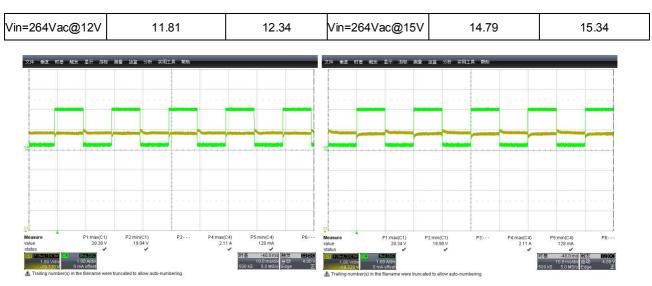




Figure 33: 264Vac / 60Hz Port-C@ Vout=12V

Figure 34: 90Vac / 60Hz Port-C@ Vout=15V			Figure 35: 264Vac / 60Hz Port-C@ Vout=15V			
	Vo_Undershoot(V)	Vo_Overshoot(V)		Vo_Undershoot(V)	Vo_Overshoot(V)	
Vin =90Vac@12V	11.87	12.32	Vin =90Vac@15V	14.86	15.35	

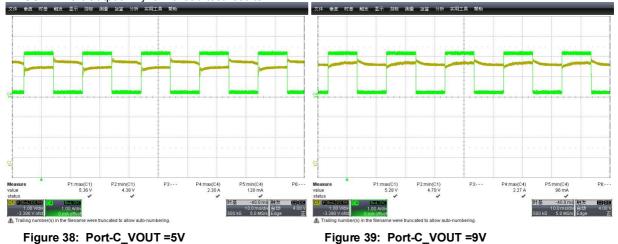
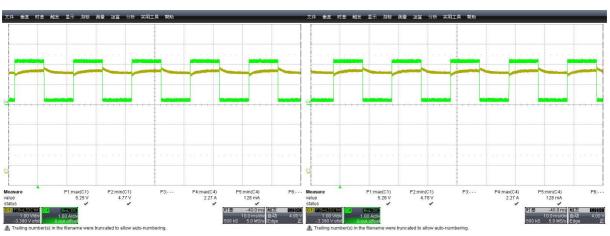


Figure 36: 90Vac / 60Hz Port-C@ Vout=20V

Figure 37: 264Vac / 60Hz Port-C@ Vout=20V


	Vo_Undershoot(V)	Vo_Overshoot(V)		Vo_Undershoot(V)	Vo_Overshoot(V)
Vin =90Vac@20V	19.94	20.36	Vin =264Vac@20V	19.90	20.34

5.2.4.2 USB A-Port Output – Dynamic load test results

	Vo_Undershoot(V)	Vo_Overshoot(V)		Vo_Undershoot(V)	Vo_Overshoot(V)
Port-C_Vout=5V	4.38	5.36	Port-C_Vout=9V	4.78	5.28

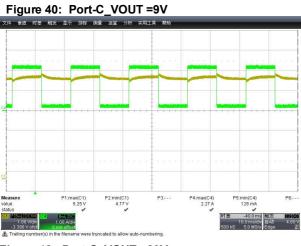


Figure 41: Port-C_VOUT =12V

Figure 42:	Port-C_VOUT =20V
------------	------------------

	Vo_Undershoot(V)	Vo_Overshoot(V)		Vo_Undershoot(V)	Vo_Overshoot(V)
Port-C_Vout=12V	4.77	5.25	Port-C_Vout=15V	4.78	5.26
Port-C_Vout=20V	4.77	5.25			

5.2.5 Output Voltage Transition Time from Low to High

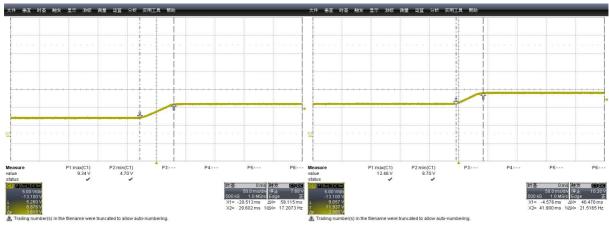


Figure 43: 5V→9V Rise Time: = 58ms

Figure 44: 9V→12V Rise Time: = 47ms

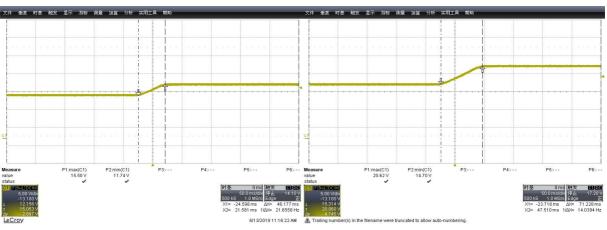


Figure 45: 12V→15V Rise Time: = 46ms

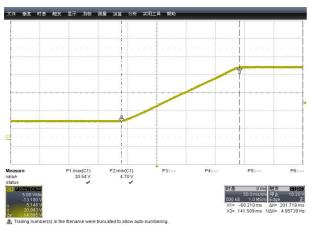
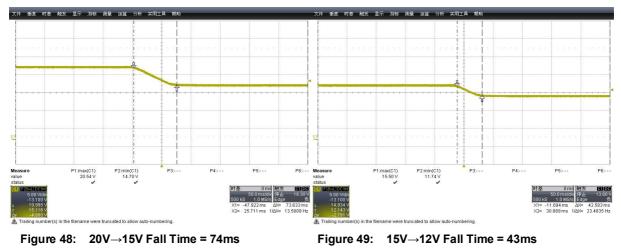



Figure 47: 5V→20V Rise Time: = 202ms

5.2.6 Output Voltage Transition Time from High to Low

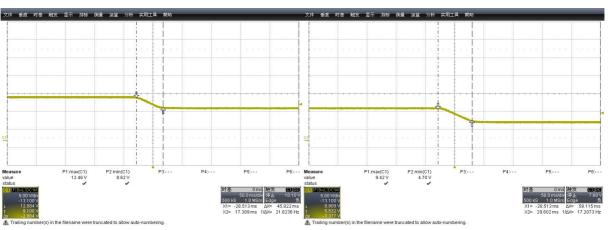


Figure 50: 12V→9V Fall Time = 46ms

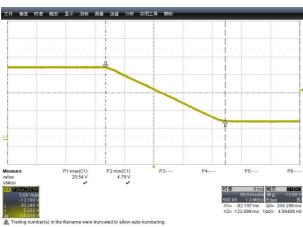


Figure 52: $20V \rightarrow 5V$ Fall Time = 204ms

5.2.7 Thermal Testing

Test Condition: Vin=90V @ 20V- Full load ,Open Frame

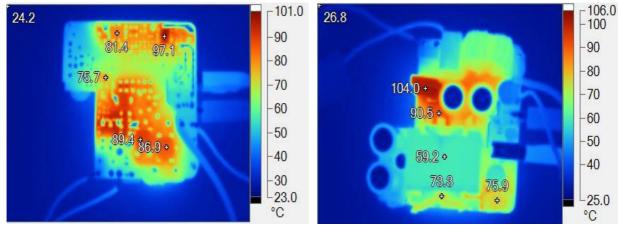


Figure 53: Bottom Suface Mount side

Test Condition: Vin=264Vac @ 20V- Full Load, Open Frame.

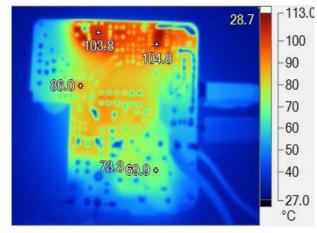


Figure 55: Bottom surface mount side

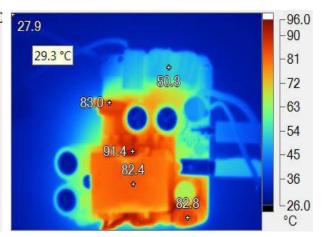
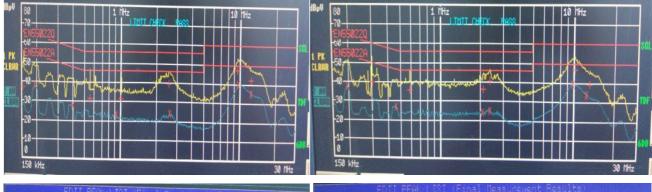


Figure 56: Top components side

	Temperature		
Test Items	Vin=90V @ Full load	Vin=264V @ Full load	Unit
Ambient Temp	24.2	27.9	°C
AP3108L	75.7	86	°C
Q1 (No heatsink) *1	104	83	°C
EUP3270	97.1	104.8	°C
T1	73	73	°C
Q2	81.4	103.8	°C
DB1	89.4	73.3	°C
DB2	86.9	69.9	°C


Notes:

- 1. Q1 need to use a Heatsink for reducing heat.
- 2. EUP3270 use a thermal rubber pad for spreading heat.

5.3. EMI (CE) Testing

5.3.1 115Vac @ Full Load testing results

race1:	I PEHK LIST (Final Neasurement Results)	Tracel:	EN550220		
ace2:	EN55022A	Trace2:	EN55022A		
race3:		Trace3:			
TRACE Quasi Peak Average Average Quasi Peak Average	FREQUENCY LEVEL dBpU DEL TA I 154.54515 kHz 37.27 -28.47 192.364799253 kHz 38.07 -15.85 397.727746704 kHz 27.86 -20.03 552.320573584 kHz 31.61 -24.38 917.447639259 kHz 23.21 -22.78	1 Quasi Peak	FREQUENCY LEVEL dBpU 194.288447245 kH 37.10 301.014505259 kHz 39.85 457.177788726 kHz 26.86 580.494478864 kHz 35.90 2.0745979178 HHz 24.10	DELTA LINIT -16.75 -20.36 -19.88 -20.09 -21.89	
Quasi Peak Quasi Peak Average	1.00339897152 1Hz 31.76 -24.23 2.53140371619 1Hz 39.32 -16.67 2.6081077802 1Hz 24.31 -21.68	1 Quasi Peak 1 Quasi Peak 2 Average	2.09534389698 lHz 36.35 2.36108594985 lHz 40.35 2.36108594985 lHz 25.23	-19.64 -15.65 -20.76	
Quasi Peak Average	9.50832737927 MHz 47.37 -12.62 9.79643920719 MHz 40.11 -9.88	2 Average 1 Quasi Peak	9.89440359926 MHz 39.64 10.1942139227 MHz 47.11	-10.35 -12.88	
Quasi Peak Average	12.4388782936 MHz 42.53 -17.46 12.4388782936 MHz 35.46 -14.53	2 Average 1 Quasi Peak	12.4388782936 MHz 34.13 13.2041199595 MHz 39.61	-15.86 -20.38	

Figure 57: 115Vac/60Hz L line at Full load

Figure 58: 115Vac/60Hz N line at Full load

L Line		N Line	
Frequency(MHz)	QP Margin	Frequency(MHz)	QP Margin
9.508	12.62	10.194	12.88
Frequency(MHz)	AV Margin	Frequency(MHz)	AV Margin
9.796	9.88	9.894	10.35

5.3.2 230Vac @ Full Load testing results

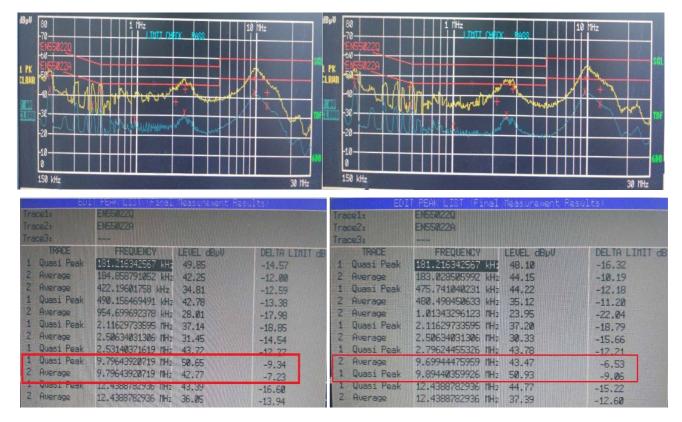


Figure 59: 230Vac/60Hz L line at Full load

Figure 60: 230Vac/60Hz N line at Full load

L Line		N Line	
Frequency(MHz)	QP Margin	Frequency(MHz)	QP Margin
9.796	9.34	9.699	6.53
Frequency(MHz)	AV Margin	Frequency(MHz)	AV Margin
9.796	7.23	9.894	9.06

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2017, Diodes Incorporated

www.diodes.com