Green
DMN3022LDG
30V SYNCHRONOUS N-CHANNEL ENHANCEMENT MODE MOSFET PowerDI3333-8 (Type D)

Product Summary

Device	BV $_{\mathrm{DSS}}$	$\mathbf{R}_{\mathrm{DS}(\mathrm{ON})}$ Max
Q1	30 V	$22 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$
Q2	30 V	$8 \mathrm{~m} \Omega @ \mathrm{~V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$

Description and Applications

This new generation MOSFET is designed to minimize the on-state resistance (RDS(ON)) and yet maintain superior switching performance, making it ideal for high efficiency power management applications.

- DC-DC Converters
- Power Management Functions
- Analog Switch

Features and Benefits

- 100% Unclamped Inductive Switch (UIS) Test in Production
- Low On-Resistance
- Low Input Capacitance
- Fast Switching Speed
- Lead-Free Finish; RoHS Compliant (Notes $1 \& 2$)
- Halogen and Antimony Free. "Green" Device (Note 3)

Mechanical Data

- Case: PowerDI ${ }^{\circledR} 3333-8$ (Type D)
- Case Material: Molded Plastic, "Green" Molding Compound. UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminal Connections: See Diagram
- Terminals: Finish - Matte Tin Annealed over Copper Leadframe. Solderable per MIL-STD-202, Method 208 ③)
- Weight: 0.044 grams (Approximate)

Ordering Information (Note 4)

Part Number	Case	Packaging
DMN3022LDG-7	PowerDI3333-8 (Type D)	$1,000 /$ Tape \& Reel
DMN3022LDG-13	PowerDI3333-8 (Type D)	$3,000 /$ Tape \& Reel

Notes: 1. EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) \& 2015/863/EU (RoHS 3) compliant. All applicable RoHS exemptions applied.
2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
3. Halogen- and Antimony-free "Green" products are defined as those which contain $<900 \mathrm{ppm}$ bromine, $<900 \mathrm{ppm}$ chlorine ($<1500 \mathrm{ppm}$ total $\mathrm{Br}+\mathrm{Cl}$) and <1000ppm antimony compounds.
4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

R06 = Product Type Marking Code
YYWW = Date Code Marking
YY = Last Two Digits of Year (ex: $18=2018$)
WW = Week Code (01 to 53)

Maximum Ratings (@T $\mathrm{A}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic		Symbol	Q1	Q2	Unit
Drain-Source Voltage		$V_{\text {DSS }}$	30		V
Gate-Source Voltage		$\mathrm{V}_{\text {GSS }}$	± 10		V
Continuous Drain Current @ V ${ }_{\text {GS }}=5 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=+70^{\circ} \mathrm{C} \end{aligned}$	ID	$\begin{aligned} & \hline 15 \\ & 12 \end{aligned}$		A
	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	ID	$\begin{aligned} & 7.6 \\ & 6.1 \end{aligned}$		A
Pulsed Drain Current (10 μ s Pulse, Duty Cycle = 1\%)		IDM	50	100	A
Avalanche Current (Note 6) L $=0.1 \mathrm{mH}$		$\mathrm{I}_{\text {AS }}$	24	43	A
Avalanche Energy (Note 6) L $=0.1 \mathrm{mH}$		$\mathrm{EAS}^{\text {S }}$	28	92	mJ

Thermal Characteristics $\left(@ T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise specified.)

Characteristic		Symbol	Value	Unit
Total Power Dissipation	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	PD	1.96	W
	$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$		1.25	
Thermal Resistance, Junction to Ambient (Note 5)	Steady State	$\mathrm{R}_{\text {өJA }}$	64	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	t < 10s		36	
Thermal Resistance, Junction to Case (Note 5)		R ${ }_{\text {өJC }}$	8.7	
Operating and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics Q1 ($@ T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 7)							
Drain-Source Breakdown Voltage	BV ${ }_{\text {DSS }}$	30	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	
Zero Gate Voltage Drain Current	IDSS	-	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	
Gate-Source Leakage	IGSS	-	-	± 100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	
ON CHARACTERISTICS (Note 7)							
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	1	1.4	2.1	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	
Static Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	-	16	22	$\mathrm{m} \Omega$	$V_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	
Forward Transfer Admittance	\|YFS		-	17	-	S	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=8 \mathrm{~A}$
Diode Forward Voltage	$V_{\text {SD }}$	-	0.84	1	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=8 \mathrm{~A}$	
DYNAMIC CHARACTERISTICS (Note 8)							
Input Capacitance	$\mathrm{C}_{\text {iss }}$	-	370	481	pF	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	
Output Capacitance	Coss	-	176	228			
Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {r }}$	-	8.2	10.6			
Gate Resistance	R_{G}	-	2.5	6.5	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=\mathrm{OV}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}= \\ & \text { 1.0MHz } \end{aligned}$	
Total Gate Charge (VGS $=4.5 \mathrm{~V}$)	Q_{G}	-	2.8	3.7	nC	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{ID}=8 \mathrm{~A}$	
Total Gate Charge at $\mathrm{V}_{\text {TH }}$	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$	-	0.35	-			
Gate-Source Charge	QGS	-	0.6	-			
Gate-Drain Charge	Q_{GD}	-	0.5	-			
Turn-On Delay Time	tD(ON)	-	4.5	6.7	ns	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=8 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=2 \Omega \end{aligned}$	
Turn-On Rise Time	tR	-	1.8	-			
Turn-Off Delay Time	to(off)	-	7.2	10.8			
Turn-Off Fall Time	t_{F}	-	1.9	-			
Reverse Recovery Time	trR	-	11.5	-	ns	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=300 \mathrm{~A} / \mu \mathrm{s}$	
Reverse Recovery Charge	QRR	-	6.9	-	nC		

Notes: \quad. Device mounted on FR-4 substrate PC board, 2 oz copper, with 1 inch square copper plate.
6. $I_{A S}$ and $E_{A S}$ ratings are based on low frequency and duty cycles to keep $T_{J}=+25^{\circ} \mathrm{C}$.
7. Short duration pulse test used to minimize self-heating effect.
8. Guaranteed by design. Not subject to product testing.

Electrical Characteristics Q2 (@T $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise specified.)

Characteristic	Symbol	Min	Typ	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 7)							
Drain-Source Breakdown Voltage	BV ${ }_{\text {DSS }}$	30	-	-	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	
Zero Gate Voltage Drain Current $\mathrm{T}_{J}=+25^{\circ} \mathrm{C}$	IDSS	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	
Gate-Source Leakage	IGSS	-	-	± 100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	
ON CHARACTERISTICS (Note 7)							
Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}(\mathrm{TH})$	0.8	0.96	1.2	V	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	
Static Drain-Source On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	-	6.4	8	$\mathrm{m} \Omega$	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}$	
Forward Transfer Admittance	\|YFS		-	33	-	S	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{l}=8 \mathrm{~A}$
Diode Forward Voltage	$V_{S D}$	-	0.78	1	V	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{IS}=8 \mathrm{~A}$	
DYNAMIC CHARACTERISTICS (Note 8)							
Input Capacitance	$\mathrm{C}_{\text {iss }}$	-	766	996	pF	$\begin{aligned} & V_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	
Output Capacitance	$\mathrm{C}_{\text {oss }}$	-	441	573	pF		
Reverse Transfer Capacitance	$\mathrm{Crss}^{\text {l }}$	-	19	25	pF		
Gate Resistance	R_{G}	-	0.69	1.5	Ω	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
Total Gate Charge (VGS = 4.5V)	Q_{G}	-	6.1	8	nC	$V_{D S}=15 \mathrm{~V}, \mathrm{ID}=8 \mathrm{~A}$	
Total Gate Charge at $\mathrm{V}_{\text {TH }}$	$\mathrm{Q}_{\mathrm{G}(\mathrm{TH})}$	-	0.47	-	nC		
Gate-Source Charge	QGS	-	0.8	-	nC		
Gate-Drain Charge	QGD	-	1.1	-	nC		
Turn-On Delay Time	$\mathrm{t}_{\mathrm{D}(\mathrm{ON})}$	-	5.6	8.4	ns	$\begin{aligned} & V_{D D}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=8 \mathrm{~A}, \mathrm{R}_{\mathrm{G}}=2 \Omega \end{aligned}$	
Turn-On Rise Time	t_{R}	-	2.5	-	ns		
Turn-Off Delay Time	tD(OFF)	-	11.7	17.5	ns		
Turn-Off Fall Time	t_{F}	-	2.4	-	ns		
Reverse Recovery Time	tRR	-	27.9	-	ns	$\mathrm{l}=8 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=300 \mathrm{~A} / \mathrm{\mu s}$	
Reverse Recovery Charge	QRR	-	9.9	-	nC		

Notes: 7. Short duration pulse test used to minimize self-heating effect.
8. Guaranteed by design. Not subject to product testing.

Typical Circuit

DMN3022LDG
V_{DS}, DRAIN-SOURCE VOLTAGE (V)
Figure 1. Q1 Typical Output Characteristic

Figure 3. Q1 Typical Transfer Characteristic

Figure 5. Q1 Typical On-Resistance vs. Drain Current and Gate Voltage

V_{DS}, DRAIN-SOURCE VOLTAGE (V)
Figure 2. Q2 Typical Output Characteristic

V_{GS}, GATE-SOURCE VOLTAGE (V)
Figure 4. Q2 Typical Transfer Characteristic

Figure 6. Q2 Typical On-Resistance vs. Drain Current and Gate Voltage

Figure 7. Q1 Typical Transfer Characteristic

I_{D}, DRAIN CURRENT (A)
Figure 9. Q1 Typical On-Resistance vs. Drain Current and Temperature

Figure 11. Q1 On-Resistance Variation with Temperature

Figure 8. Q2 Typical Transfer Characteristic

I_{D}, DRAIN CURRENT (A)
Figure 10. Q2 Typical On-Resistance vs. Drain Current and Temperature

Figure 12. Q2 On-Resistance Variation with Temperature

Figure 13. Q1 On-Resistance Variation with Temperature

Figure 15. Q1 Gate Threshold Variation vs. Junction Temperature

V_{SD}, SOURCE-DRAIN VOLTAGE (V)
Figure 17. Q1 Diode Forward Voltage vs. Current

Figure 14. Q2 On-Resistance Variation with Temperature

Figure 16. Q2 Gate Threshold Variation vs. Junction Temperature

V_{SD}, SOURCE-DRAIN VOLTAGE (V)
Figure 18. Q2 Diode Forward Voltage vs. Current

DMN3022LDG

Figure 19. Q1 Typical Drain-Source Leakage Current vs. Voltage

Figure 21. Q1 Gate Charge

V_{DS}, DRAIN-SOURCE VOLTAGE (V)
Figure 23. Q1 SOA, Safe Operation Area

Figure 20. Q2 Typical Drain-Source Leakage Current vs. Voltage

Figure 22. Q2 Gate Charge

Figure 24. Q2 SOA, Safe Operation Area

Figure 25. Single Pulse Maximum Power Dissipation

Figure 26. Transient Thermal Resistance

DMN3022LDG

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.
PowerDI3333-8 (Type D)

PowerDI3333-8 (Type D)			
Dim	Min	Max	Typ
A	1.17	1.23	1.20
A1	0.00	0.05	0.02
A3	0.15	0.25	0.20
A3a	0.05	0.15	0.10
b	0.30	0.40	0.35
b2	0.95	1.05	1.00
D	3.20	3.40	3.30
D2	2.65	2.75	2.70
E	3.20	3.40	3.30
E2	1.75	1.85	1.80
d	0.15	0.25	0.20
e	--	--	0.65
k	--	--	0.30
k1	0.21	0.31	0.26
L	0.40	0.50	0.45
La	0.15	0.25	0.20
z	0.25	0.35	0.30
All Dimensions in	mm		

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.
PowerDI3333-8 (Type D)

Dimensions	Value (in mm)
\mathbf{C}	0.650
\mathbf{X}	0.450
$\mathbf{X 1}$	1.100
$\mathbf{X 2}$	2.400
$\mathbf{X 3}$	2.800
$\mathbf{X 4}$	3.500
\mathbf{Y}	0.650
$\mathbf{Y 1}$	0.300
$\mathbf{Y 2}$	1.390
$\mathbf{Y 3}$	1.900
$\mathbf{Y 4}$	3.600

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:
A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or
2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated
www.diodes.com

