
Very Low Power 8-Output PCIe Clock Buffer With On-chip Termination

Description

The DIODES PI6CB18801 is an 8-output very low power PCIe® Gen1/Gen2/Gen3/Gen4 clock buffer. It takes an reference input to fanout eight 100MHz low power differential HCSL outputs with on-chip terminations. The on-chip termination can save 32 external resistors and make layout easier. Individual OE pin for each output provides easier power management.

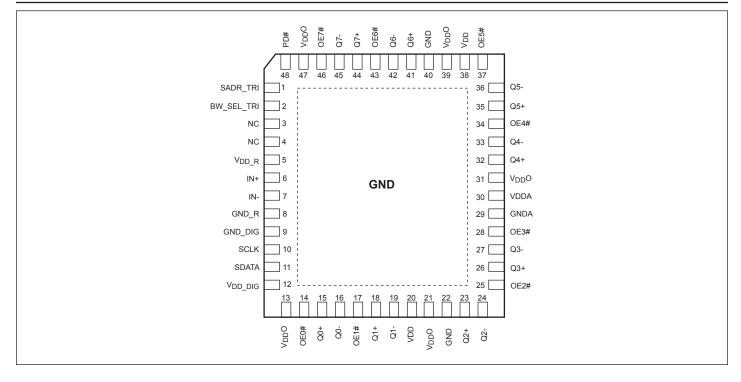
It uses Diodes proprietary PLL design to achieve very low jitter that meets PCIe Gen1/Gen2/Gen3/Gen4 requirements. Other than PCIe 100MHz support, this device also support Ethernet application with 50MHz or 125MHz via SMBus. It provides various options such as different slew rate and amplitude through strapping pins or SMBUS so that users can configure the device easily to get the optimized performance for their individual boards.

Block Diagram

Features

- 1.8V Supply Voltage
- ٠ HCSL Input: 100MHz, also support 50MHz or 125MHz via **SMBus**
- 8 Differential Low Power HCSL Outputs with on-chip Termination •
- Individual Output Enable
- Programmable Slew Rate and Output Amplitude for each output
- Differential Outputs blocked until PLL is locked ٠
- Strapping Pins or SMBus for Configuration
- 3.3V Tolerant SMBus Interface Support
- Very Low Jitter Outputs
 - Differential Cycle-to-cycle Jitter <50ps
 - Differential Output-to-output Skew <50ps
 - PCIe Gen1/Gen2/Gen3/Gen4 Compliant
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/104/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative. https://www.diodes.com/guality/product-definitions/
- Packaging (Pb-free & Green):
- 48-lead 6×6mm TQFN

Notes:


2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

Pin Configuration

Pin Description

Pin Number	nber Pin Name Type		ре	Description		
1	SADR_TRI	Input	Tri-level	Latch to select SMBus Address. This pin has an internal pull-down		
2	BW_SEL_TRI	Input	Tri-level	Latch to select low loop bandwidth, bypass PLL, and high loop band- width. This pin has both internal pull-up and pull-down		
3	NC			Internal connected for feedback loop. Do not connect this pin		
4	NC			Internal connected for feedback loop. Do not connect this pin		
5	V _{DD} _R	Power		Power supply for input differential buffers		
6	IN+	Input		Differential true clock input		
7	IN-	Input		Differential complementary clock input		
8	GND_R	Power		Ground for input differential buffers		
9	GND_DIG	Power		Ground for digital circuitry		
10	SCLK	Input	CMOS	SMBUS clock input, 3.3V tolerant		
11	SDATA	Input/ Output	CMOS	SMBUS Data line, 3.3V tolerant		
12	V _{DD} _DIG	Power		Power supply for digital circuitry, nominal 1.8V		
13, 21, 31, 39, 47	V _{DDO}	Power		Power supply for differential outputs		
14	OE0#	Input	CMOS	Active low input for enabling Q0 pair. This pin has an internal pull-down. 1 =disable outputs, 0 = enable outputs		

Pin Number	Pin Name	Ту	ре	Description
15	Q0+	Output	HCSL	Differential true clock output
16	Q0-	Output	HCSL	Differential complementary clock output
17	OE1#	Input	CMOS	Active low input for enabling Q1 pair. This pin has an internal pull- down. 1 =disable outputs, 0 = enable outputs
18	Q1+	Output	HCSL	Differential true clock output
19	Q1-	Output	HCSL	Differential complementary clock output
20, 38	V _{DD}	Power		Power supply, nominal 1.8V
22, 40	GND	Power		Ground
23	Q2+	Output	HCSL	Differential true clock output
24	Q2-	Output	HCSL	Differential complementary clock output
25	OE2#	Input	CMOS	Active low input for enabling Q2 pair. This pin has an internal pull- down. 1 =disable outputs, 0 = enable outputs
26	Q3+	Output	HCSL	Differential true clock output
27	Q3-	Output	HCSL	Differential complementary clock output
28	OE3#	Input	CMOS	Active low input for enabling Q3 pair. This pin has an internal pull- down. 1 =disable outputs, 0 = enable outputs
29	GNDA	Power		Ground for analog circuitry
30	V _{DDA}	Power		Power supply for analog circuitry
32	Q4+	Output	HCSL	Differential true clock output
33	Q4-	Output	HCSL	Differential complementary clock output
34	OE4#	Input	CMOS	Active low input for enabling Q4 pair. This pin has an internal pull- down. 1 =disable outputs, 0 = enable outputs
35	Q5+	Output	HCSL	Differential true clock output
36	Q5-	Output	HCSL	Differential complementary clock output
37	OE5#	Input	CMOS	Active low input for enabling Q5 pair. This pin has an internal pull- down. 1 =disable outputs, 0 = enable outputs
41	Q6+	Output	HCSL	Differential true clock output
42	Q6-	Output	HCSL	Differential complementary clock output
43	OE6#	Input	CMOS	Active low input for enabling Q6 pair. This pin has an internal pull- down. 1 =disable outputs, 0 = enable outputs
44	Q7+	Output	HCSL	Differential true clock output
45	Q7-	Output	HCSL	Differential complementary clock output
46	OE7#	Input	CMOS	Active low input for enabling Q7 pair. This pin has an internal pull- down. 1 =disable outputs, 0 = enable outputs
48	PD#	Input	CMOS	Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor.
49	EPAD	Power		Connect to Ground

SMBus Address Selection Table

	SADR	Address	+Read/Write Bit
State of SADR on first application of PD#	0	1101011	Х
	М	1101100	Х
	1	1101101	Х

Power Management Table

PD#	IN	SMBus OE bit	OEn#	Qn+	Qn-	PLL Status
0	Х	Х	Х	Low	Low	Off
1	Running	0	Х	Low	Low	On ⁽¹⁾
1	Running	1	0	Running	Running	On ⁽¹⁾
1	Running	1	1	Low	Low	On ⁽¹⁾

Note:

1. If PLL Bypass mode is selected, the PLL will be off and outputs will be running.

PLL Operating Mode Select Table

BW_SEL_TRI	Operating Mode	Byte1 [7:6] Readback	Byte1 [4:3] Readback
0	PLL with low Bandwidth	00	00
М	PLL Bypass	01	01
1	PLL with high Bandwidth	11	11

Frequency Select Table

Freq. Select Byte 3 [4:3]	IN (MHz)	Qn (MHz)
00 (default)	100	100
01	50	50
10	125	125
11	Reserved	Reserved

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)	
Storage Temperature65°C to +150°C	Note:
Supply Voltage to Ground Potential, V_{DDxx} –0.5V to +2.5V	Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress
Input Voltage –0.5V to $\mathrm{V_{DD}}$ +0.5V, not exceed 2.5V	rating only and functional operation of the device at these or
SMBus, Input High Voltage 3.6V	any other conditions above those indicated in the operational
ESD Protection (HBM)	sections of this specification is not implied. Exposure to ab- solute maximum rating conditions for extended periods may
Junction Temperature125 °C max	affect reliability.
	1

Operating Conditions

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{DD} , V _{DDA} , V _{DD} _R, V _{DD} _DIG	Power Supply Voltage		1.7	1.8	1.9	V
V _{DDO}	Output Power Supply Voltage		0.9975	1.05-1.8	1.9	V
I _{DDA}	Analog Power Supply Current	V _{DDA} + V _{DD} R, PLL mode, All outputs active @100MHz		11	15	mA
I _{DD}	Power Supply Current	$V_{DD} + V_{DD_DIG}$, All outputs active @100MHz		8	10	mA
I _{DDO}	Power Supply Current for Outputs	All outputs active @100MHz		28	35	mA
I _{DDA_PD}	Analog Power Supply Power Down ⁽¹⁾ Current	V _{DDA} + V _{DD} R, PLL mode, All outputs active @100MHz		0.7	1	mA
I _{DD_PD}	Power Supply Power Down ⁽¹⁾ Current	V _{DD} + V _{DD_DIG} , All outputs LOW/ LOW		1.2	2	mA
I _{DDO_PD}	Power Supply Current Power Down ⁽¹⁾ for Outputs	V _{DDO} , All outputs LOW/LOW		0	0.01	mA
T _A	Ambient Temperature	Industrial grade	-40		85	°C

Note:

1. Input clock is not running.

Input Electrical Characteristics

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
R _{pu}	Internal pull up resistance			120		KΩ
R _{dn}	Internal pull down resistance			120		KΩ
L _{PIN}	Pin inductance				7	nH

SMBus Electrical Characteristics

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{DDSMB}	Nominal bus voltage		1.7		3.6	V
		SMBus, V _{DDSMB} = 3.3V	2.1		3.6	
V _{IHSMB}	SMBus Input High Voltage	SMBus, V _{DDSMB} < 3.3V	0.65 V _{DDSMB}			V
3.7	SMBus Input Low Voltage	SMBus, V _{DDSMB} = 3.3V			0.6	V
V _{ILSMB}		SMBus, V _{DDSMB} < 3.3V			0.6	
I _{SMBSINK}	SMBus sink current	SMBus, at V _{OLSMB}	4			mA
VOLSMB	SMBus Output Low Voltage	SMBus, at I _{SMBSINK}			0.4	V
f _{MAXSMB}	SMBus operating frequency	Maximum frequency			400	kHz
t _{RMSB}	SMBus rise time	(Max V_{IL} - 0.15) to (Min V_{IH} + 0.15)			1000	ns
t _{FMSB}	SMBus fall time	(Min V_{IH} + 0.15) to (Max V_{IL} - 0.15)			300	ns

LVCMOS DC Electrical Characteristics

Temperature = T_A ; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{IH}	Input High Voltage	Single-ended inputs, except SMBus	0.75 V _{DD}		V _{DD} +0.3	V
V _{IM}	Input Mid Voltage	SADR_TRI, BW_SEL_TRI	$0.4 V_{DD}$	$0.5 V_{DD}$	$0.6V_{DD}$	V
V _{IL}	Input Low Voltage	Single-ended inputs, except SMBus	-0.3		0.25 V _{DD}	V
I _{IH}	Input High Current	Single-ended inputs, $V_{IN} = V_{DD}$			20	μA
I _{IL}	Input Low Current	Single-ended inputs, $V_{IN} = 0V$	-20			μA
I _{IH}	Input High Current	Single-ended inputs with pull up / pull down resistor, $V_{\rm IN}$ = $V_{\rm DD}$			220	μA
I _{IL}	Input Low Current	Single-ended inputs with pull up / pull down resistor, $V_{\rm IN}$ = 0V	-220			μA
C _{IN}	Input Capacitance		1.5		5	pF

LVCMOS AC Electrical Characteristics

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
t _{OELAT}	Output enable latency	Q start after OE# assertion Q stop after OE# deassertion	1		3	clocks
t _{PDLAT}	PD# de-assertion	Differential outputs enable after PD# de- assertion		20	300	us

HCSL Input Characteristics⁽¹⁾

Temperature = T_A ; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Units
V _{IHDIF}	Diff. Input High Voltage ⁽³⁾	IN+, IN-, single-end measurement	600	800	1150	mV
V _{ILDIF}	Diff. Input Low Voltage ⁽³⁾	IN+, IN-, single-end measurement	-300	0	300	mV
V _{COM}	Diff. Input Common Mode Voltage		150		1000	mV
V _{SWING}	Diff. Input Swing Voltage	Peak to peak value (V _{IHDIF} - V _{ILDIF})	300		1450	mV
f _{INBP}	Input Frequency	PLL Bypass mode	1		200	MHz
f _{IN100}	Input Frequency	100MHz PLL	60	100	110	MHz
f _{IN125}	Input Frequency	125MHz PLL	75	125	137.5	MHz
f _{IN156}	Input Frequency	50MHz PLL	30	50	65	MHz
t _{STAB}	Clock stabilization	From V_{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock		0.6	1.0	ms
t _{RF}	Diff. Input Slew Rate ⁽²⁾	Measured differentially	0.4			V/ns
I _{IN}	Diff. Input Leakage Current	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	0.01	5	uA
t _{DC}	Diff. Input Duty Cycle	Measured differentially	45		55	%
tj _{c-c}	Diff. Input Cycle to cycle jitter	Measured differentially			125	ps

Note:

1. Guaranteed by design and characterization, not 100% tested in production

2. Slew rate measured through +/-75mV window centered around differential zero

3. The device can be driven by a single-ended clock by driving the true clock and biasing the complement clock input to the V bias, where V bias is $(V_{IH}-V_{IL})/2$

HCSL Output Characteristics

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
V _{OH}	Output Voltage High ⁽¹⁾	Statistical measurement on single-ended	660	774	900	mV
V _{OL}	Output Voltage Low ⁽¹⁾	signal using oscilloscope math function	-150		150	mV
V _{OMAX}	Output Voltage Maximum ⁽¹⁾	Measurement on single ended signal using		821	1150	mV
V _{OMIN}	Output Voltage Minimum ⁽¹⁾	absolute value	-300	-15		mV
VOSWING	Output Swing Voltage ^(1,2,3)	Scope averaging off	300	1536		mV
V _{OC}	Output Cross Voltage ^(1,2,4)		250	430	550	mV
DV _{OC}	V _{OC} Magnitude Change ^(1,2,5)			12	140	mV

Note:

1. At default SMBUS amplitude settings

2. Guaranteed by design and characterization, not 100% tested in production

3. Measured from differential waveform

4. This one is defined as voltage where $Q^+ = Q^-$ measured on a component test board and only applied to the differential rising edge

5. The total variation of all Vcross measurements in any particular system. This is a subset of Vcross_min/max allowed.

HCSL Output AC Characteristics

Temperature = T_A; Supply voltages per normal operation conditions; See test circuits for the load conditions

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
f _{OUT}	Output Frequency			100		MHz
DIAZ	PLL bandwidth ^(1,8)	-3dB point in High Bandwidth Mode	2	2.7	4	MHz
BW	PLL bandwidth ^(1,0)	-3dB point in Low Bandwidth Mode	1	1.4	2	MHz
tj _{peak}	PLL Jitter Peaking	Peak pass band gain		1.2	2	dB
tan	Slew rate ^(1,2,3)	Scope averaging on fast setting	2.2	3	6	V/ns
t _{RF}	Siew Tate	Scope averaging on slow setting	0.4	2	3	V/ns
Dt _{RF}	Slew rate matching ^(1,2,4)	Scope averaging on		7	20	%
t _{SKEW}	Output Skew ^(1,2)	Averaging on, $V_T = 50\%$		43	50	ps
4	Droposition delay	PLL Bypass mode, $V_T = 50\%$	3000	3600	4500	ps
tPDELAY	Propagation delay	PLL mode, V _T = 50%	0	90	200	ps
tj _{c-c}	Cycle to cycle jitter ^(1,2)			14	50	ps
		PCIe Gen 1	20	22	86	ps
		PCIe Gen 2 Low Band, 10kHz < f < 1.5MHz	0.2	0.3	3.0	ps
	Integrated phase jitter (RMS) (1,5,6)	PCIe Gen 2 High Band, 1.5MHz < f < Ny- quist (50MHz)	1.6	2.0	3.1	ps
tj _{PHASE}		PCIe Gen 3 (PLL BW of 2-4 or 2-5MHz, CDR =10MHz)	0.3	0.35	1.0	ps
		PCIe Gen 4 (PLL BW of 2-4 or 2-5MHz, CDR =10MHz)	0.2	0.3	0.5	ps
		125MHz, 1.5MHz to 20MHz, -20dB/decade Rollover < 1.5MHz, -40dB/decade rolloff > 10MHz ⁽⁹⁾		1.9	2	ps
		PCIe Gen 1		0.6	5	ps
		PCIe Gen 2 Low Band, 10kHz < f < 1.5MHz		0.1	0.3	ps
		PCIe Gen 2 High Band, 1.5MHz < f < Ny- quist (50MHz)		0.05	0.1	ps
tj _{PHASEA}	Additive Integrated phase jitter (RMS) ^(1,5,10)	PCIe Gen 3 (PLL BW of 2-4 or 2-5MHz, CDR =10MHz)		0.05	0.1	ps
		PCIe Gen 4 (PLL BW of 2-4 or 2-5MHz, CDR =10MHz) (BW_SEL_TRI=M)		0.03	0.05	ps
		125MHz, 1.5MHz to 20MHz, -20dB/decade Rollover < 1.5MHz, -40dB/decade rolloff > 10MHz		0.15	0.3	ps
t _{DC}	Duty Cycle ^(1,2)	Measured differentially, PLL Mode	45	50	55	%
t _{DCD}	Duty Cycle Distortion ^(1,7)	Measured differentially, PLL Bypass Mode at 100MHz	-1	0	1	%

Symbol	Parameters	Condition	Min.	Тур.	Max.	Units
t _{STARTUP}	Start up time				10	ms
t _{LOCK}	PLL lock time				20	ms

Note:

1. Guaranteed by design and characterization, not 100% tested in production

2. Measured from differential waveform

3. Slew rate is measured through the Vswing voltage range centered around differential 0V, within +/-150mV window

4. Slew rate matching is measured through +/-75mV window centered around differential zero

5. See http://www.pcisig.com for complete specs

6. Sample size of at least 100k cycles. This can be extrapolated to 108ps pk-pk @ 1M cycles for a BER of 10⁻¹²

7. Duty cycle distortion is the difference in duty cycle between the out and input clock when te device is operated in the PLL bypass mode

8. The Min and Max values of each BW setting track each other, low BW max will never occur with high BW min

9. Applies to all differential outputs

10. For additive jitter RMS value is calculated by the following equation = SQRT [(total jitter)*²] - (input jitter)*²]

SMBus Serial Data Interface

The PI6CB18801 is a slave only device that supports block read and block write protocol using a single 7-bit address and read/write bit as shown below.

Read and write block transfers can be stopped after any complete byte transfer.

Address Assignment

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	See SBMus Address Selection table		1/0	

Note: SMBus address is latched on SADR pin

How to Write

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	8 bits	1 bit	1 bit
Start bit	Add.	W(0)	Ack	Beginning Byte loca- tion = N	Ack	Data Byte count = X	Ack	Beginning Data Byte (N)	Ack	 Data Byte (N+X-1)	Ack	Stop bit

How to Read

1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	1 bit	7 bits	1 bit	1 bit	8 bits	1 bit	8 bits	1 bit
Start bit	Address	W(0)	Ack	Beginning Byte loca- tion = N	Ack	Repeat Start bit	Address	R(1)	Ack	Data Byte count = X	Ack	Beginning Data Byte (N)	Ack

8 bits	1 bit	1 bit
Data Byte	NAck	Stop bit
(N+X-1)	INACK	Stop bit

Byte 0: Output Enable Register⁽¹⁾

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	Q7_OE	Q7 output enable	RW	1	Low/Low	Enabled
6	Q6_OE	Q6 output enable	RW	1	Low/Low	Enabled
5	Q5_OE	Q5 output enable	RW	1	Low/Low	Enabled
4	Q4_OE	Q4 output enable	RW	1	Low/Low	Enabled
3	Q3_OE	Q3 output enable	RW	1	Low/Low	Enabled
2	Q2_OE	Q2 output enable	RW	1	Low/Low	Enabled
1	Q1_OE	Q1 output enable	RW	1	Low/Low	Enabled
0	Q0_OE	Q0 output enable	RW	1	Low/Low	Enabled

Note:

1. A low on these bits will override the OE# pins and force the differential outputs to Low/Low states

Byte 1: PLL Operating Mode and Output Amplitude Control Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	PLLMODERB1	PLL Mode Readback Bit1	R	Latch	Saa DLL Omanat	ing Mada Tabla
6	PLLMODERB0	PLL Mode Readback Bit0	R	Latch	See PLL Operat	ing Mode Table
5	PLLMODE_SWCTR	Enable SW control of PLL Mode	RW	0	Values in B1[7:6] set PLL Mode	Values in B1[4:3] set PLL Mode
4	PLLMODE1	PLL Mode control Bit1	RW ⁽¹⁾	0	See PLL Operat	ing Modo Tabla
3	PLLMODE0	PLL Mode control Bit0	RW ⁽¹⁾	0	See PLL Operat	ing wode rable
2	Reserved			1		
1	Amplitude1	Control output emplitude	RW	1	'00' = 0.6V, '01' =	= 0.7V, '10' =
0	Amplitude0	Control output amplitude	RW	0	0.8V, '11' = 0.9V	

Note:

1. B1[5] must be set to a 1 for these bits to have any effect on the part

Byte 2: Differential Output Slew Rate Control Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	SLEWRATECTR_Q7	Control slew rate of Q7	RW	1	Slow setting	Fast setting
6	SLEWRATECTR_Q6	Control slew rate of Q6	RW	1	Slow setting	Fast setting
5	SLEWRATECTR_Q5	Control slew rate of Q5	RW	1	Slow setting	Fast setting
4	SLEWRATECTR_Q4	Control slew rate of Q4	RW	1	Slow setting	Fast setting
3	SLEWRATECTR_Q3	Control slew rate of Q3	RW	1	Slow setting	Fast setting
2	SLEWRATECTR_Q2	Control slew rate of Q2	RW	1	Slow setting	Fast setting
1	SLEWRATECTR_Q1	Control slew rate of Q1	RW	1	Slow setting	Fast setting
0	SLEWRATECTR_Q0	Control slew rate of Q0	RW	1	Slow setting	Fast setting

Power Up Bit **Control Function** Description Type 0 1 Condition 7 Reserved 1 6 Reserved 1 SW Freq. SW Freq. 5 FREQ_SEL_EN Enable SW selection of frequency RW 0 selection selection disabled enabled 4 FSEL1 Freq. Select Bit 1 RW^1 0 See Frequency Select Table RW^1 3 FSEL0 0 Freq. Select Bit 0 2 1 Reserved 1 Reserved 1 0 1 SLEWRATESEL FB Adjust Slew Rate of Feedback signal RW 2.0V/ns 3.0V/ns

Byte 3: Frequency Select Control Register

Note:

1. B1[5] must be set to a 1 for these bits to have any effect on the part

Byte 4: Reserved

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7:0	Reserved			1		

Byte 5: Revision and Vendor ID Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	RID3	Revision ID	R	0	rev = 0000	
6	RID2		R	0		
5	RID1		R	0		
4	RID0		R	0		
3	PVID3		R	0		
2	PVID2	Vendor ID	R	0	Pericom = 0011	
1	PVID1		R	1		
0	PVID0		R	1		

Byte 6: Device Type/Device ID Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1
7	DTYPE1	Device type	R	0	'00' = CG, '01' = ZDB, '10' = Reserve, '11' = ZDB	
6	DTYPE0		R	1		
5	DID5	Device ID	R	0	- 001000 binary, 08Hex	
4	DID4		R	0		
3	DID3		R	1		
2	DID2		R	0		
1	DID1		R	0		
0	DID0		R	0		

Byte 7: Byte Count Register

Bit	Control Function	Description	Туре	Power Up Condition	0	1	
7	Reserved			0			
6	Reserved			0			
5	Reserved			0			
4	BC4		RW	0			
3	BC3		RW	1	Writing to this register will configure how many bytes wil be read back, default is 8 bytes		
2	BC2	Byte count programming	RW	0			
1	BC1		RW	0			
0	BC0		RW	0]		

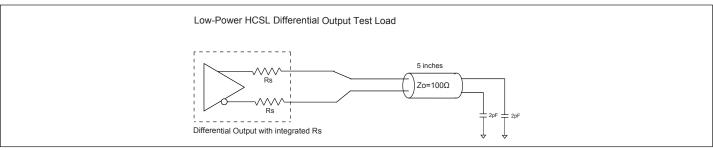


Figure 1. Low Power HCSL Test Circuit

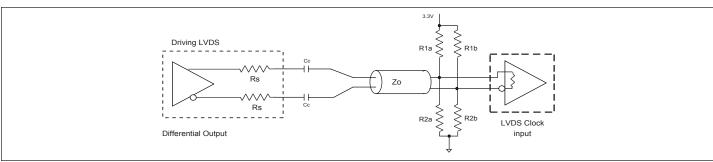


Figure 2. Differential Output Driving LVDS

Alternate Differential Output Terminations

Component	Receiver with termination	Receiver without termination	Unit
R_{1a}, R_{1b}	10,000	140	Ω
R_{2a}, R_{2b}	5,600	75	Ω
C _C	0.1	0.1	μF
V _{CM}	1.2	1.2	V

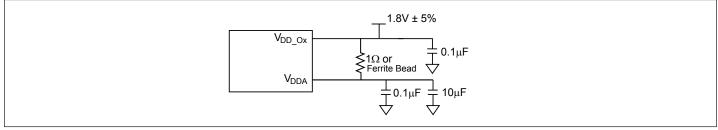
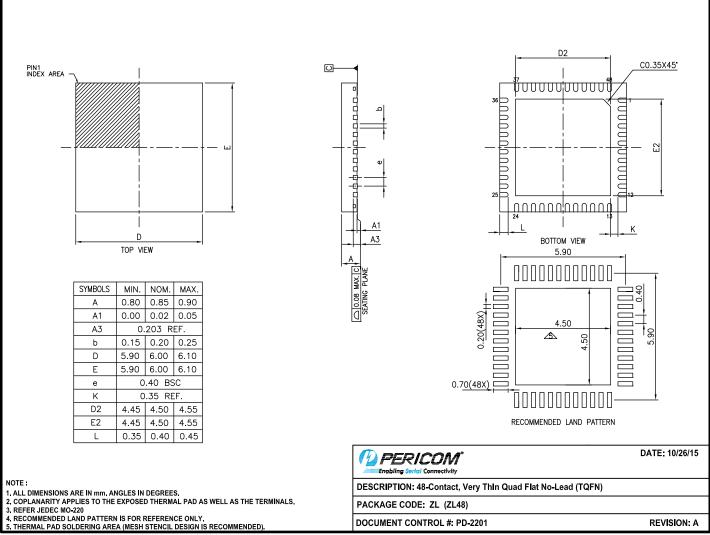


Figure 3. Power Supply Filter

Part Marking


Y: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

Packaging Mechanical

15-0244

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Package Code	Package Description	Pin 1 Location
PI6CB18801ZLIEX	ZL	48-Contact, Very Thin Quad Flat No-Lead (TQFN)	Top Right Corner
PI6CB18801ZLIEX-13R	ZL	48-Contact, Very Thin Quad Flat No-Lead (TQFN)	Top Left Corner

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. I = Industrial

- 5. E = Pb-free and Green
- 6. X suffix = Tape/Reel

7. For packaging detail, go to our website at: https://www.diodes.com/assets/MediaList-Attachments/Diodes-Package-Information.pdf

IMPORTANT NOTICE

DIODES INCORPORATED (Diodes) AND ITS SUBSIDIARIES MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RE-1. GARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2 The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes' products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes' products. Diodes' products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of Diodes' products for their intended applications, (c) ensuring their applications, which incorporate Diodes' products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3 Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4 Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5. Diodes' products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/termsand-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6 Diodes' products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes' products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

9. This Notice may be periodically updated with the most recent version available at https://www.diodes.com/about/company/terms-and-conditions/ important-notice

The Diodes logo is a registered trademark of Diodes Incorporated in the United States and other countries. All other trademarks are the property of their respective owners. © 2023 Diodes Incorporated. All Rights Reserved.

www.diodes.com