# PAM8010 EV Board User Guide AE Department

#### 1. Revision Information

| Date       | Revision | Description     | Comment |
|------------|----------|-----------------|---------|
| 2011/05/19 | V1.0     | Initial Release |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |
|            |          |                 |         |

#### 2. EV Board Schematic

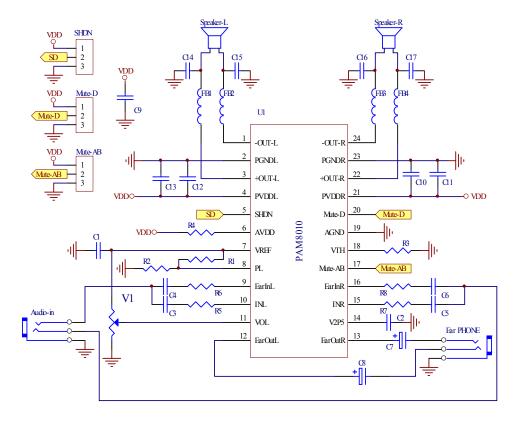



Figure 1 Demo Board Schematic



#### 3. PAM8010 Bemo Board Description

PAM8010 demo board is designed for PAM8010 demo and evaluation, targeted to be used in providing a simple and convenient evaluation environment for the PAM8010. Requires parts, potentiometer for standard RCA jacks for audio inputs, pin jacks for power supply and signal outputs, low-pass RC output filter for each channel, etc. on the board make it easy to be evaluated.

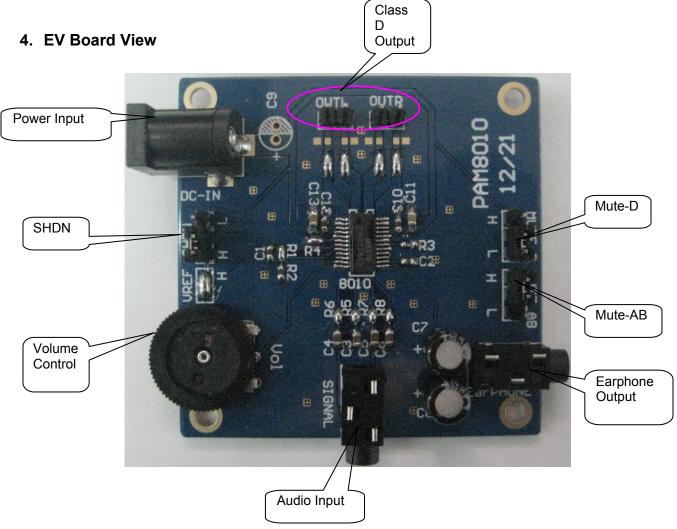



Figure 2 Demo Board Top View

#### **EV Board Operational Sequence:**

- a. Preset the power supply to between 2.5V and 5.5V.
- b. Connect power supply to EV board power.
- c. Connect audio input from audio input jack.
- d. Connect the SPKs to the BTL output jack.
- e. Turn on the power supply and verify that the sound quality of speaker.
- f. Turn on the power supply and verify that the sound quality of speaker.



#### **EV Board BOM List**

| Item            | Value   | Туре                 | Rating | Description                  |  |
|-----------------|---------|----------------------|--------|------------------------------|--|
| C11,C13         | 10uF    | X5R/X7R,Ceramic/0805 | 10V    | PVDD main decoupling CAP     |  |
| C10,C12         | 1uF     | X5R/X7R,Ceramic/0603 | 10V    | PVDD coupling CAP            |  |
| C3,C4,C5,C6     | 0.47uF  | X5R/X7R,Ceramic/0805 | 10V    | Input coupling CAP           |  |
| C2              | 1uF     | X5R/X7R,Ceramic/0603 | 10V    | V2P5 bypass CAP              |  |
| C1              | 1uF     | X5R/X7R,Ceramic/0603 | 10V    | Vref bypass CAP              |  |
| VR1             | 50K     |                      |        | VOL Bias                     |  |
| C7,C8           | 220uF   | Electrolytic         | 10V    | Class AB output Blocking CAP |  |
| FB1,FB2,FB3,FB4 | 2Α/120Ω | 0805                 |        | For EMI                      |  |
| C14,C15,C16,C17 | 1nF     | X5R/X7R,Ceramic/0603 | 10V    |                              |  |

#### 5. External Components Selection

#### Power Supply decoupling Caps (C10, C11, C12, C13)

- (1) Low ESR for good THD, PSRR
- (2) C10 and C12 1.0 µF ceramic for higher frequency transients, spikes
- (3) C11 and C13, additional 10μF or greater for low frequency noise filtering and serves as a local storage capacitor for supplying current during large signal transients on the amplifier outputs
- (4) Need place very closed to the IC

#### Input Capacitors (C3, C4, C5, C6)

- (1) Form a high pass filter with Ri, and the cut off frequency is fc=1/2∏Ri\*Ci
- (2) Low leakage current needed, ceramic recommend

#### Class AB Output Capacitors (C7, C8)

- (1) Form a low pass filter with RL, and the cut off frequency is fc=1/2∏RL\*COi
- (2) Low leakage current needed

#### V2P5 Bypass Capacitor (C2)

- (1) 1µF ceramic recommend
- (2) Need place very closely to the pin for good THD, PSRR



### 6. PCB Layout Guidelines

#### Grounding

- (1) Use plane grounding or separate grounds
- (2) Do not use one line connecting power GND and analog GND
- (3) Output noise grounds must tie to system ground at the power in exclusively.
- (4) Signal currents for the inputs need to be returned to quite ground. This ground only ties to the signal components and the GND pin.

#### **Others**

- (1) The power supply de coupling capacitors need to place very close to the PAM8010's pins.
- (2) The output route should be far away from audio input route.

### 7. PCB Layout Example

#### **Top Layer**

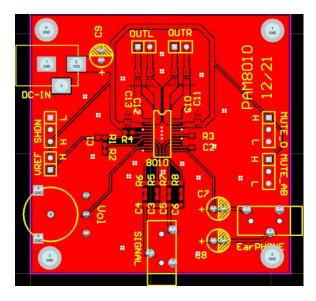



Figure 3

#### **Bottom Layer**

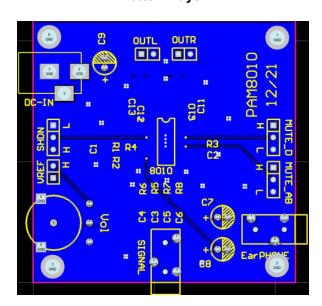



Figure 4